mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-25 06:49:36 +03:00
240 lines
6.8 KiB
C
240 lines
6.8 KiB
C
/**
|
|
* @file
|
|
* @author [Krishna Vedala](https://github.com/kvedala)
|
|
* @brief Implementation of
|
|
* [Spirograph](https://en.wikipedia.org/wiki/Spirograph)
|
|
*
|
|
* @details
|
|
* Implementation of the program is based on the geometry shown in the figure
|
|
* below:
|
|
*
|
|
* <a
|
|
* href="https://commons.wikimedia.org/wiki/File:Resonance_Cascade.svg"><img
|
|
* src="https://upload.wikimedia.org/wikipedia/commons/3/39/Resonance_Cascade.svg"
|
|
* alt="Spirograph geometry from Wikipedia" style="width: 250px"/></a>
|
|
*/
|
|
#define _USE_MATH_DEFINES /**< required for MSVC compiler */
|
|
#include <math.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
/** Generate spirograph curve into arrays `x` and `y` such that the i^th point
|
|
* in 2D is represented by `(x[i],y[i])`. The generating function is given by:
|
|
* \f{eqnarray*}{
|
|
* x &=& R\left[ (1-k) \cos (t) + l\cdot k\cdot\cos \left(\frac{1-k}{k}t\right)
|
|
* \right]\\
|
|
* y &=& R\left[ (1-k) \sin (t) - l\cdot k\cdot\sin \left(\frac{1-k}{k}t\right)
|
|
* \right] \f}
|
|
* where
|
|
* * \f$R\f$ is the scaling parameter that we will consider \f$=1\f$
|
|
* * \f$l=\frac{\rho}{r}\f$ is the relative distance of marker from the centre
|
|
* of inner circle and \f$0\le l\le1\f$
|
|
* * \f$\rho\f$ is physical distance of marker from centre of inner circle
|
|
* * \f$r\f$ is the radius of inner circle
|
|
* * \f$k=\frac{r}{R}\f$ is the ratio of radius of inner circle to outer circle
|
|
* and \f$0<k<1\f$
|
|
* * \f$R\f$ is the radius of outer circle
|
|
* * \f$t\f$ is the angle of rotation of the point i.e., represents the time
|
|
* parameter
|
|
*
|
|
* Since we are considering ratios, the actual values of \f$r\f$ and
|
|
* \f$R\f$ are immaterial.
|
|
*
|
|
* @param [out] x output array containing absicca of points (must be
|
|
* pre-allocated)
|
|
* @param [out] y output array containing ordinates of points (must be
|
|
* pre-allocated)
|
|
* @param l the relative distance of marker from the centre of
|
|
* inner circle and \f$0\le l\le1\f$
|
|
* @param k the ratio of radius of inner circle to outer circle and \f$0<k<1\f$
|
|
* @param N number of sample points along the trajectory (higher = better
|
|
* resolution but consumes more time and memory)
|
|
* @param rot the number of rotations to perform (can be fractional value)
|
|
*/
|
|
void spirograph(double *x, double *y, double l, double k, size_t N, double rot)
|
|
{
|
|
double dt = rot * 2.f * M_PI / N;
|
|
double t = 0.f, R = 1.f;
|
|
const double k1 = 1.f - k;
|
|
|
|
for (size_t step = 0; step < N; step++, t += dt)
|
|
{
|
|
x[step] = R * (k1 * cos(t) + l * k * cos(k1 * t / k));
|
|
y[step] = R * (k1 * sin(t) - l * k * sin(k1 * t / k));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Test function to save resulting points to a CSV file.
|
|
*
|
|
*/
|
|
void test()
|
|
{
|
|
size_t N = 500;
|
|
double l = 0.3, k = 0.75, rot = 10.;
|
|
char fname[50];
|
|
snprintf(fname, 50, "spirograph_%.2f_%.2f_%.2f.csv", l, k, rot);
|
|
FILE *fp = fopen(fname, "wt");
|
|
if (!fp)
|
|
{
|
|
perror(fname);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
double *x = (double *)malloc(N * sizeof(double));
|
|
double *y = (double *)malloc(N * sizeof(double));
|
|
|
|
spirograph(x, y, l, k, N, rot);
|
|
|
|
for (size_t i = 0; i < N; i++)
|
|
{
|
|
fprintf(fp, "%.5g, %.5g", x[i], y[i]);
|
|
if (i < N - 1)
|
|
{
|
|
fputc('\n', fp);
|
|
}
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
free(x);
|
|
free(y);
|
|
}
|
|
|
|
#ifdef USE_GLUT // this is set by CMAKE automatically, if available
|
|
#ifdef __APPLE__
|
|
#include <GLUT/glut.h> // include path on Macs is different
|
|
|
|
/** A wrapper that is not implemented on MacOS
|
|
*/
|
|
void glutBitmapString(void *font, char *string) {
|
|
for (char *ch = string; *ch != '\0'; ch++) glutBitmapCharacter(font, ch);
|
|
}
|
|
|
|
#else
|
|
#include <gl/glut.h>
|
|
#endif
|
|
|
|
/**
|
|
* @brief Function to graph (x,y) points on the OpenGL graphics window.
|
|
*
|
|
* @param x array containing absicca of points (must be pre-allocated)
|
|
* @param y array containing ordinates of points (must be pre-allocated)
|
|
* @param N number of points in the the arrays
|
|
*/
|
|
void display_graph(const double *x, const double *y, size_t N, double l,
|
|
double k)
|
|
{
|
|
glClearColor(1.0f, 1.0f, 1.0f,
|
|
0.0f); // Set background color to white and opaque
|
|
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
|
|
|
|
glBegin(GL_LINES); // draw line segments
|
|
glColor3f(0.f, 0.f, 1.f); // blue
|
|
glPointSize(2.f); // point size in pixels
|
|
|
|
for (size_t i = 1; i < N; i++)
|
|
{
|
|
glVertex2f(x[i - 1], y[i - 1]); // line from
|
|
glVertex2f(x[i], y[i]); // line to
|
|
}
|
|
glEnd();
|
|
|
|
glColor3f(0.f, 0.f, 0.f);
|
|
char buffer[20];
|
|
snprintf(buffer, 20, "l = %.3f", l);
|
|
glRasterPos2f(-.85, .85);
|
|
glutBitmapString(GLUT_BITMAP_HELVETICA_18, buffer);
|
|
snprintf(buffer, 20, "k = %.3f", k);
|
|
glRasterPos2f(-.85, .75);
|
|
glutBitmapString(GLUT_BITMAP_HELVETICA_18, buffer);
|
|
|
|
glutSwapBuffers();
|
|
}
|
|
|
|
/**
|
|
* @brief Test function with animation
|
|
*
|
|
*/
|
|
void test2()
|
|
{
|
|
const size_t N = 1000; // number of samples
|
|
const double step = 0.01; // animation steps
|
|
static double l = step * 10, k = step, rot = 20.;
|
|
|
|
static bool direction1 = true; // increment if true, otherwise decrement
|
|
static bool direction2 = true; // increment if true, otherwise decrement
|
|
|
|
double *x = (double *)malloc(N * sizeof(double));
|
|
double *y = (double *)malloc(N * sizeof(double));
|
|
|
|
spirograph(x, y, l, k, N, rot);
|
|
display_graph(x, y, N, l, k);
|
|
|
|
if (direction1) // increment k
|
|
{
|
|
if (k >= (1.f - step)) // maximum limit
|
|
direction1 = false; // reverse direction of k
|
|
else
|
|
k += step;
|
|
}
|
|
else // decrement k
|
|
{
|
|
if (k <= step) // minimum limit
|
|
{
|
|
direction1 = true; // reverse direction of k
|
|
|
|
if (direction2) // increment l
|
|
{
|
|
if (l >= (1.f - step)) // max limit of l
|
|
direction2 = false; // reverse direction of l
|
|
else
|
|
l += step;
|
|
}
|
|
else // decrement l
|
|
{
|
|
if (l <= step) // minimum limit of l
|
|
direction2 = true; // reverse direction of l
|
|
else
|
|
l -= step;
|
|
}
|
|
}
|
|
else // no min limit of k
|
|
k -= step;
|
|
}
|
|
|
|
free(x); // free dynamic memories
|
|
free(y);
|
|
}
|
|
|
|
/**
|
|
* @brief GLUT timer callback function to add animation delay.
|
|
*/
|
|
void timer_cb(int t)
|
|
{
|
|
glutTimerFunc(25, timer_cb, 0);
|
|
glutPostRedisplay();
|
|
}
|
|
#endif
|
|
|
|
/** Main function */
|
|
int main(int argc, char **argv)
|
|
{
|
|
#ifdef USE_GLUT
|
|
glutInit(&argc, argv);
|
|
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
|
|
glutCreateWindow("Spirograph");
|
|
glutInitWindowSize(400, 400);
|
|
// glutIdleFunc(glutPostRedisplay);
|
|
glutTimerFunc(25, timer_cb, 0);
|
|
glutDisplayFunc(test2);
|
|
glutMainLoop();
|
|
#else
|
|
test();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|