mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-22 05:21:49 +03:00
a537cf3645
* feat: add bisection method * fix function documentation * fix float to zero comparison * fix error definition * fix the sign function Co-authored-by: Sharon "Cass" Cassidy <122662061+CascadingCascade@users.noreply.github.com> * change float type to double type * fix sign comparison equals to zero * remove pow function * Update numerical_methods/bisection_method.c Co-authored-by: David Leal <halfpacho@gmail.com> * add parameter docs * update docs * Update numerical_methods/bisection_method.c Co-authored-by: David Leal <halfpacho@gmail.com> * Update numerical_methods/bisection_method.c Co-authored-by: David Leal <halfpacho@gmail.com> * update docs --------- Co-authored-by: Sharon "Cass" Cassidy <122662061+CascadingCascade@users.noreply.github.com> Co-authored-by: David Leal <halfpacho@gmail.com>
112 lines
3.3 KiB
C
112 lines
3.3 KiB
C
/**
|
|
* @file
|
|
* @brief In mathematics, the [Bisection
|
|
* Method](https://en.wikipedia.org/wiki/Bisection_method) is a root-finding
|
|
* method that applies to any continuous function for which one knows two values
|
|
* with opposite signs.
|
|
* @details
|
|
* The method consists of repeatedly bisecting the interval
|
|
* defined by the two values and then selecting the subinterval in which the
|
|
* function changes sign, and therefore must contain a root. It is a very
|
|
* simple and robust method, but it is also relatively slow. Because of this,
|
|
* it is often used to obtain a rough approximation to a solution which is
|
|
* then used as a starting point for more rapidly converging methods.
|
|
* @author [Aybars Nazlica](https://github.com/aybarsnazlica)
|
|
*/
|
|
|
|
#include <assert.h> /// for assert
|
|
#include <math.h> /// for fabs
|
|
#include <stdio.h> /// for IO operations
|
|
|
|
#define EPSILON 0.0001 // a small positive infinitesimal quantity
|
|
#define NMAX 50 // maximum number of iterations
|
|
|
|
/**
|
|
* @brief Function to check if two input values have the same sign (the property
|
|
* of being positive or negative)
|
|
* @param a Input value
|
|
* @param b Input value
|
|
* @returns 1.0 if the input values have the same sign,
|
|
* @returns -1.0 if the input values have different signs
|
|
*/
|
|
double sign(double a, double b)
|
|
{
|
|
return (a > 0 && b > 0) + (a < 0 && b < 0) - (a > 0 && b < 0) -
|
|
(a < 0 && b > 0);
|
|
}
|
|
|
|
/**
|
|
* @brief Continuous function for which we want to find the root
|
|
* @param x Real input variable
|
|
* @returns The evaluation result of the function using the input value
|
|
*/
|
|
double func(double x)
|
|
{
|
|
return x * x * x + 2.0 * x - 10.0; // f(x) = x**3 + 2x - 10
|
|
}
|
|
|
|
/**
|
|
* @brief Root-finding method for a continuous function given two values with
|
|
* opposite signs
|
|
* @param x_left Lower endpoint value of the interval
|
|
* @param x_right Upper endpoint value of the interval
|
|
* @param tolerance Error threshold
|
|
* @returns `root of the function` if bisection method succeed within the
|
|
* maximum number of iterations
|
|
* @returns `-1` if bisection method fails
|
|
*/
|
|
double bisection(double x_left, double x_right, double tolerance)
|
|
{
|
|
int n = 1; // step counter
|
|
double middle; // midpoint
|
|
|
|
while (n <= NMAX)
|
|
{
|
|
middle = (x_left + x_right) / 2; // bisect the interval
|
|
double error = middle - x_left;
|
|
|
|
if (fabs(func(middle)) < EPSILON || error < tolerance)
|
|
{
|
|
return middle;
|
|
}
|
|
|
|
if (sign(func(middle), func(x_left)) > 0.0)
|
|
{
|
|
x_left = middle; // new lower endpoint
|
|
}
|
|
else
|
|
{
|
|
x_right = middle; // new upper endpoint
|
|
}
|
|
|
|
n++; // increase step counter
|
|
}
|
|
return -1; // method failed (maximum number of steps exceeded)
|
|
}
|
|
|
|
/**
|
|
* @brief Self-test implementations
|
|
* @returns void
|
|
*/
|
|
static void test()
|
|
{
|
|
/* Compares root value that is found by the bisection method within a given
|
|
* floating point error*/
|
|
assert(fabs(bisection(1.0, 2.0, 0.0001) - 1.847473) <
|
|
EPSILON); // the algorithm works as expected
|
|
assert(fabs(bisection(100.0, 250.0, 0.0001) - 249.999928) <
|
|
EPSILON); // the algorithm works as expected
|
|
|
|
printf("All tests have successfully passed!\n");
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main()
|
|
{
|
|
test(); // run self-test implementations
|
|
return 0;
|
|
}
|