mirror of
https://github.com/TheAlgorithms/C
synced 2024-12-24 20:16:57 +03:00
188 lines
4.8 KiB
C
188 lines
4.8 KiB
C
// C program for Kruskal's algorithm to find Minimum Spanning Tree
|
|
// of a given connected, undirected and weighted graph
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
// a structure to represent a weighted edge in graph
|
|
struct Edge
|
|
{
|
|
int src, dest, weight;
|
|
};
|
|
|
|
// a structure to represent a connected, undirected
|
|
// and weighted graph
|
|
struct Graph
|
|
{
|
|
// V-> Number of vertices, E-> Number of edges
|
|
int V, E;
|
|
|
|
// graph is represented as an array of edges.
|
|
// Since the graph is undirected, the edge
|
|
// from src to dest is also edge from dest
|
|
// to src. Both are counted as 1 edge here.
|
|
struct Edge *edge;
|
|
};
|
|
|
|
// Creates a graph with V vertices and E edges
|
|
struct Graph *createGraph(int V, int E)
|
|
{
|
|
struct Graph *graph = new Graph();
|
|
graph->V = V;
|
|
graph->E = E;
|
|
|
|
graph->edge = new Edge[E];
|
|
|
|
return graph;
|
|
}
|
|
|
|
// A structure to represent a subset for union-find
|
|
struct subset
|
|
{
|
|
int parent;
|
|
int rank;
|
|
};
|
|
|
|
// A utility function to find set of an element i
|
|
// (uses path compression technique)
|
|
int find(struct subset subsets[], int i)
|
|
{
|
|
// find root and make root as parent of i
|
|
// (path compression)
|
|
if (subsets[i].parent != i)
|
|
subsets[i].parent = find(subsets, subsets[i].parent);
|
|
|
|
return subsets[i].parent;
|
|
}
|
|
|
|
// A function that does union of two sets of x and y
|
|
// (uses union by rank)
|
|
void Union(struct subset subsets[], int x, int y)
|
|
{
|
|
int xroot = find(subsets, x);
|
|
int yroot = find(subsets, y);
|
|
|
|
// Attach smaller rank tree under root of high
|
|
// rank tree (Union by Rank)
|
|
if (subsets[xroot].rank < subsets[yroot].rank)
|
|
subsets[xroot].parent = yroot;
|
|
else if (subsets[xroot].rank > subsets[yroot].rank)
|
|
subsets[yroot].parent = xroot;
|
|
|
|
// If ranks are same, then make one as root and
|
|
// increment its rank by one
|
|
else
|
|
{
|
|
subsets[yroot].parent = xroot;
|
|
subsets[xroot].rank++;
|
|
}
|
|
}
|
|
|
|
// Compare two edges according to their weights.
|
|
// Used in qsort() for sorting an array of edges
|
|
int myComp(const void *a, const void *b)
|
|
{
|
|
struct Edge *a1 = (struct Edge *)a;
|
|
struct Edge *b1 = (struct Edge *)b;
|
|
return a1->weight > b1->weight;
|
|
}
|
|
|
|
// The main function to construct MST using Kruskal's algorithm
|
|
void KruskalMST(struct Graph *graph)
|
|
{
|
|
int V = graph->V;
|
|
struct Edge result[V]; // Tnis will store the resultant MST
|
|
int e = 0; // An index variable, used for result[]
|
|
int i = 0; // An index variable, used for sorted edges
|
|
|
|
// Step 1: Sort all the edges in non-decreasing
|
|
// order of their weight. If we are not allowed to
|
|
// change the given graph, we can create a copy of
|
|
// array of edges
|
|
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);
|
|
|
|
// Allocate memory for creating V ssubsets
|
|
struct subset *subsets = (struct subset *)malloc(V * sizeof(struct subset));
|
|
|
|
// Create V subsets with single elements
|
|
for (int v = 0; v < V; ++v)
|
|
{
|
|
subsets[v].parent = v;
|
|
subsets[v].rank = 0;
|
|
}
|
|
|
|
// Number of edges to be taken is equal to V-1
|
|
while (e < V - 1 && i < graph->E)
|
|
{
|
|
// Step 2: Pick the smallest edge. And increment
|
|
// the index for next iteration
|
|
struct Edge next_edge = graph->edge[i++];
|
|
|
|
int x = find(subsets, next_edge.src);
|
|
int y = find(subsets, next_edge.dest);
|
|
|
|
// If including this edge does't cause cycle,
|
|
// include it in result and increment the index
|
|
// of result for next edge
|
|
if (x != y)
|
|
{
|
|
result[e++] = next_edge;
|
|
Union(subsets, x, y);
|
|
}
|
|
// Else discard the next_edge
|
|
}
|
|
|
|
// print the contents of result[] to display the
|
|
// built MST
|
|
printf("Following are the edges in the constructed MST\n");
|
|
for (i = 0; i < e; ++i)
|
|
printf("%d -- %d == %d\n", result[i].src, result[i].dest,
|
|
result[i].weight);
|
|
return;
|
|
}
|
|
|
|
// Driver program to test above functions
|
|
int main()
|
|
{
|
|
/* Let us create following weighted graph
|
|
10
|
|
0--------1
|
|
| \ |
|
|
6| 5\ |15
|
|
| \ |
|
|
2--------3
|
|
4 */
|
|
int V = 4; // Number of vertices in graph
|
|
int E = 5; // Number of edges in graph
|
|
struct Graph *graph = createGraph(V, E);
|
|
|
|
// add edge 0-1
|
|
graph->edge[0].src = 0;
|
|
graph->edge[0].dest = 1;
|
|
graph->edge[0].weight = 10;
|
|
|
|
// add edge 0-2
|
|
graph->edge[1].src = 0;
|
|
graph->edge[1].dest = 2;
|
|
graph->edge[1].weight = 6;
|
|
|
|
// add edge 0-3
|
|
graph->edge[2].src = 0;
|
|
graph->edge[2].dest = 3;
|
|
graph->edge[2].weight = 5;
|
|
|
|
// add edge 1-3
|
|
graph->edge[3].src = 1;
|
|
graph->edge[3].dest = 3;
|
|
graph->edge[3].weight = 15;
|
|
|
|
// add edge 2-3
|
|
graph->edge[4].src = 2;
|
|
graph->edge[4].dest = 3;
|
|
graph->edge[4].weight = 4;
|
|
|
|
KruskalMST(graph);
|
|
|
|
return 0;
|
|
}
|