mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-29 00:33:14 +03:00
370 lines
9.7 KiB
C
370 lines
9.7 KiB
C
/**
|
|
* @file
|
|
* \brief Compute real eigen values and eigen vectors of a symmetric matrix
|
|
* using [QR decomposition](https://en.wikipedia.org/wiki/QR_decomposition)
|
|
* method.
|
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
|
*/
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#include "qr_decompose.h"
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
#define LIMS 9 /**< limit of range of matrix values */
|
|
#define EPSILON 1e-10 /**< accuracy tolerance limit */
|
|
|
|
/**
|
|
* create a square matrix of given size with random elements
|
|
* \param[out] A matrix to create (must be pre-allocated in memory)
|
|
* \param[in] N matrix size
|
|
*/
|
|
void create_matrix(double **A, int N)
|
|
{
|
|
int i, j, tmp, lim2 = LIMS >> 1;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (i = 0; i < N; i++)
|
|
{
|
|
A[i][i] = (rand() % LIMS) - lim2;
|
|
for (j = i + 1; j < N; j++)
|
|
{
|
|
tmp = (rand() % LIMS) - lim2;
|
|
A[i][j] = tmp;
|
|
A[j][i] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform multiplication of two matrices.
|
|
* * R2 must be equal to C1
|
|
* * Resultant matrix size should be R1xC2
|
|
* \param[in] A first matrix to multiply
|
|
* \param[in] B second matrix to multiply
|
|
* \param[out] OUT output matrix (must be pre-allocated)
|
|
* \param[in] R1 number of rows of first matrix
|
|
* \param[in] C1 number of columns of first matrix
|
|
* \param[in] R2 number of rows of second matrix
|
|
* \param[in] C2 number of columns of second matrix
|
|
* \returns pointer to resultant matrix
|
|
*/
|
|
double **mat_mul(double **A, double **B, double **OUT, int R1, int C1, int R2,
|
|
int C2)
|
|
{
|
|
if (C1 != R2)
|
|
{
|
|
perror("Matrix dimensions mismatch!");
|
|
return OUT;
|
|
}
|
|
|
|
int i;
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (i = 0; i < R1; i++)
|
|
{
|
|
for (int j = 0; j < C2; j++)
|
|
{
|
|
OUT[i][j] = 0.f;
|
|
for (int k = 0; k < C1; k++) OUT[i][j] += A[i][k] * B[k][j];
|
|
}
|
|
}
|
|
return OUT;
|
|
}
|
|
|
|
/** Compute eigen values using iterative shifted QR decomposition algorithm as
|
|
* follows:
|
|
* 1. Use last diagonal element of A as eigen value approximation \f$c\f$
|
|
* 2. Shift diagonals of matrix \f$A' = A - cI\f$
|
|
* 3. Decompose matrix \f$A'=QR\f$
|
|
* 4. Compute next approximation \f$A'_1 = RQ \f$
|
|
* 5. Shift diagonals back \f$A_1 = A'_1 + cI\f$
|
|
* 6. Termination condition check: last element below diagonal is almost 0
|
|
* 1. If not 0, go back to step 1 with the new approximation \f$A_1\f$
|
|
* 2. If 0, continue to step 7
|
|
* 7. Save last known \f$c\f$ as the eigen value.
|
|
* 8. Are all eigen values found?
|
|
* 1. If not, remove last row and column of \f$A_1\f$ and go back to step 1.
|
|
* 2. If yes, stop.
|
|
*
|
|
* \note The matrix \f$A\f$ gets modified
|
|
*
|
|
* \param[in,out] A matrix to compute eigen values for
|
|
* \param[out] eigen_vals resultant vector containing computed eigen values
|
|
* \param[in] mat_size matrix size
|
|
* \param[in] debug_print 1 to print intermediate Q & R matrices, 0 for not to
|
|
* \returns time for computation in seconds
|
|
*/
|
|
double eigen_values(double **A, double *eigen_vals, int mat_size,
|
|
char debug_print)
|
|
{
|
|
if (!eigen_vals)
|
|
{
|
|
perror("Output eigen value vector cannot be NULL!");
|
|
return -1;
|
|
}
|
|
double **R = (double **)malloc(sizeof(double *) * mat_size);
|
|
double **Q = (double **)malloc(sizeof(double *) * mat_size);
|
|
if (!Q || !R)
|
|
{
|
|
perror("Unable to allocate memory for Q & R!");
|
|
if (Q)
|
|
{
|
|
free(Q);
|
|
}
|
|
if (R)
|
|
{
|
|
free(R);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* allocate dynamic memory for matrices */
|
|
for (int i = 0; i < mat_size; i++)
|
|
{
|
|
R[i] = (double *)malloc(sizeof(double) * mat_size);
|
|
Q[i] = (double *)malloc(sizeof(double) * mat_size);
|
|
if (!Q[i] || !R[i])
|
|
{
|
|
perror("Unable to allocate memory for Q & R.");
|
|
for (; i >= 0; i--)
|
|
{
|
|
free(R[i]);
|
|
free(Q[i]);
|
|
}
|
|
free(Q);
|
|
free(R);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (debug_print)
|
|
{
|
|
print_matrix(A, mat_size, mat_size);
|
|
}
|
|
|
|
int rows = mat_size, columns = mat_size;
|
|
int counter = 0, num_eigs = rows - 1;
|
|
double last_eig = 0;
|
|
|
|
clock_t t1 = clock();
|
|
while (num_eigs > 0) /* continue till all eigen values are found */
|
|
{
|
|
/* iterate with QR decomposition */
|
|
while (fabs(A[num_eigs][num_eigs - 1]) > EPSILON)
|
|
{
|
|
last_eig = A[num_eigs][num_eigs];
|
|
for (int i = 0; i < rows; i++) A[i][i] -= last_eig; /* A - cI */
|
|
qr_decompose(A, Q, R, rows, columns);
|
|
|
|
if (debug_print)
|
|
{
|
|
print_matrix(A, rows, columns);
|
|
print_matrix(Q, rows, columns);
|
|
print_matrix(R, columns, columns);
|
|
printf("-------------------- %d ---------------------\n",
|
|
++counter);
|
|
}
|
|
|
|
mat_mul(R, Q, A, columns, columns, rows, columns);
|
|
for (int i = 0; i < rows; i++) A[i][i] += last_eig; /* A + cI */
|
|
}
|
|
|
|
/* store the converged eigen value */
|
|
eigen_vals[num_eigs] = last_eig;
|
|
|
|
if (debug_print)
|
|
{
|
|
printf("========================\n");
|
|
printf("Eigen value: % g,\n", last_eig);
|
|
printf("========================\n");
|
|
}
|
|
|
|
num_eigs--;
|
|
rows--;
|
|
columns--;
|
|
}
|
|
eigen_vals[0] = A[0][0];
|
|
double dtime = (double)(clock() - t1) / CLOCKS_PER_SEC;
|
|
|
|
if (debug_print)
|
|
{
|
|
print_matrix(R, mat_size, mat_size);
|
|
print_matrix(Q, mat_size, mat_size);
|
|
}
|
|
|
|
/* cleanup dynamic memory */
|
|
for (int i = 0; i < mat_size; i++)
|
|
{
|
|
free(R[i]);
|
|
free(Q[i]);
|
|
}
|
|
free(R);
|
|
free(Q);
|
|
|
|
return dtime;
|
|
}
|
|
|
|
/**
|
|
* test function to compute eigen values of a 2x2 matrix
|
|
* \f[\begin{bmatrix}
|
|
* 5 & 7\\
|
|
* 7 & 11
|
|
* \end{bmatrix}\f]
|
|
* which are approximately, {15.56158, 0.384227}
|
|
*/
|
|
void test1()
|
|
{
|
|
int mat_size = 2;
|
|
double X[][2] = {{5, 7}, {7, 11}};
|
|
double y[] = {15.56158, 0.384227}; // corresponding y-values
|
|
double eig_vals[2] = {0, 0};
|
|
|
|
// The following steps are to convert a "double[][]" to "double **"
|
|
double **A = (double **)malloc(mat_size * sizeof(double *));
|
|
for (int i = 0; i < mat_size; i++) A[i] = X[i];
|
|
|
|
printf("------- Test 1 -------\n");
|
|
|
|
double dtime = eigen_values(A, eig_vals, mat_size, 0);
|
|
|
|
for (int i = 0; i < mat_size; i++)
|
|
{
|
|
printf("%d/5 Checking for %.3g --> ", i + 1, y[i]);
|
|
char result = 0;
|
|
for (int j = 0; j < mat_size && !result; j++)
|
|
{
|
|
if (fabs(y[i] - eig_vals[j]) < 0.1)
|
|
{
|
|
result = 1;
|
|
printf("(%.3g) ", eig_vals[j]);
|
|
}
|
|
}
|
|
|
|
// ensure that i^th expected eigen value was computed
|
|
assert(result != 0);
|
|
printf("found\n");
|
|
}
|
|
printf("Test 1 Passed in %.3g sec\n\n", dtime);
|
|
free(A);
|
|
}
|
|
|
|
/**
|
|
* test function to compute eigen values of a 2x2 matrix
|
|
* \f[\begin{bmatrix}
|
|
* -4& 4& 2& 0& -3\\
|
|
* 4& -4& 4& -3& -1\\
|
|
* 2& 4& 4& 3& -3\\
|
|
* 0& -3& 3& -1&-1\\
|
|
* -3& -1& -3& -3& 0
|
|
* \end{bmatrix}\f]
|
|
* which are approximately, {9.27648, -9.26948, 2.0181, -1.03516, -5.98994}
|
|
*/
|
|
void test2()
|
|
{
|
|
int mat_size = 5;
|
|
double X[][5] = {{-4, 4, 2, 0, -3},
|
|
{4, -4, 4, -3, -1},
|
|
{2, 4, 4, 3, -3},
|
|
{0, -3, 3, -1, -3},
|
|
{-3, -1, -3, -3, 0}};
|
|
double y[] = {9.27648, -9.26948, 2.0181, -1.03516,
|
|
-5.98994}; // corresponding y-values
|
|
double eig_vals[5];
|
|
|
|
// The following steps are to convert a "double[][]" to "double **"
|
|
double **A = (double **)malloc(mat_size * sizeof(double *));
|
|
for (int i = 0; i < mat_size; i++) A[i] = X[i];
|
|
|
|
printf("------- Test 2 -------\n");
|
|
|
|
double dtime = eigen_values(A, eig_vals, mat_size, 0);
|
|
|
|
for (int i = 0; i < mat_size; i++)
|
|
{
|
|
printf("%d/5 Checking for %.3g --> ", i + 1, y[i]);
|
|
char result = 0;
|
|
for (int j = 0; j < mat_size && !result; j++)
|
|
{
|
|
if (fabs(y[i] - eig_vals[j]) < 0.1)
|
|
{
|
|
result = 1;
|
|
printf("(%.3g) ", eig_vals[j]);
|
|
}
|
|
}
|
|
|
|
// ensure that i^th expected eigen value was computed
|
|
assert(result != 0);
|
|
printf("found\n");
|
|
}
|
|
printf("Test 2 Passed in %.3g sec\n\n", dtime);
|
|
free(A);
|
|
}
|
|
|
|
/**
|
|
* main function
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
srand(time(NULL));
|
|
|
|
int mat_size = 5;
|
|
if (argc == 2)
|
|
{
|
|
mat_size = atoi(argv[1]);
|
|
}
|
|
else
|
|
{ // if invalid input argument is given run tests
|
|
test1();
|
|
test2();
|
|
printf("Usage: ./qr_eigen_values [mat_size]\n");
|
|
return 0;
|
|
}
|
|
|
|
if (mat_size < 2)
|
|
{
|
|
fprintf(stderr, "Matrix size should be > 2\n");
|
|
return -1;
|
|
}
|
|
|
|
int i;
|
|
|
|
double **A = (double **)malloc(sizeof(double *) * mat_size);
|
|
/* number of eigen values = matrix size */
|
|
double *eigen_vals = (double *)malloc(sizeof(double) * mat_size);
|
|
if (!eigen_vals)
|
|
{
|
|
perror("Unable to allocate memory for eigen values!");
|
|
free(A);
|
|
return -1;
|
|
}
|
|
for (i = 0; i < mat_size; i++)
|
|
{
|
|
A[i] = (double *)malloc(sizeof(double) * mat_size);
|
|
eigen_vals[i] = 0.f;
|
|
}
|
|
|
|
/* create a random matrix */
|
|
create_matrix(A, mat_size);
|
|
|
|
print_matrix(A, mat_size, mat_size);
|
|
|
|
double dtime = eigen_values(A, eigen_vals, mat_size, 0);
|
|
printf("Eigen vals: ");
|
|
for (i = 0; i < mat_size; i++) printf("% 9.4g\t", eigen_vals[i]);
|
|
printf("\nTime taken to compute: % .4g sec\n", dtime);
|
|
|
|
for (int i = 0; i < mat_size; i++) free(A[i]);
|
|
free(A);
|
|
free(eigen_vals);
|
|
return 0;
|
|
}
|