mirror of
https://github.com/TheAlgorithms/C
synced 2025-01-27 11:59:28 +03:00
190 lines
5.4 KiB
C
190 lines
5.4 KiB
C
/**
|
|
* \file
|
|
* \authors [Krishna Vedala](https://github.com/kvedala)
|
|
* \brief Solve a multivariable first order [ordinary differential equation
|
|
* (ODEs)](https://en.wikipedia.org/wiki/Ordinary_differential_equation) using
|
|
* [midpoint Euler
|
|
* method](https://en.wikipedia.org/wiki/Midpoint_method)
|
|
*
|
|
* \details
|
|
* The ODE being solved is:
|
|
* \f{eqnarray*}{
|
|
* \dot{u} &=& v\\
|
|
* \dot{v} &=& -\omega^2 u\\
|
|
* \omega &=& 1\\
|
|
* [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)}
|
|
* \f}
|
|
* The exact solution for the above problem is:
|
|
* \f{eqnarray*}{
|
|
* u(x) &=& \cos(x)\\
|
|
* v(x) &=& -\sin(x)\\
|
|
* \f}
|
|
* The computation results are stored to a text file `midpoint_euler.csv` and
|
|
* the exact soltuion results in `exact.csv` for comparison. <img
|
|
* src="https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/numerical_methods/ode_midpoint_euler.svg"
|
|
* alt="Implementation solution"/>
|
|
*
|
|
* To implement [Van der Pol
|
|
* oscillator](https://en.wikipedia.org/wiki/Van_der_Pol_oscillator), change the
|
|
* ::problem function to:
|
|
* ```cpp
|
|
* const double mu = 2.0;
|
|
* dy[0] = y[1];
|
|
* dy[1] = mu * (1.f - y[0] * y[0]) * y[1] - y[0];
|
|
* ```
|
|
* \see ode_forward_euler.c, ode_semi_implicit_euler.c
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#define order 2 /**< number of dependent variables in ::problem */
|
|
|
|
/**
|
|
* @brief Problem statement for a system with first-order differential
|
|
* equations. Updates the system differential variables.
|
|
* \note This function can be updated to and ode of any order.
|
|
*
|
|
* @param[in] x independent variable(s)
|
|
* @param[in,out] y dependent variable(s)
|
|
* @param[in,out] dy first-derivative of dependent variable(s)
|
|
*/
|
|
void problem(const double *x, double *y, double *dy)
|
|
{
|
|
const double omega = 1.F; // some const for the problem
|
|
dy[0] = y[1]; // x dot
|
|
dy[1] = -omega * omega * y[0]; // y dot
|
|
}
|
|
|
|
/**
|
|
* @brief Exact solution of the problem. Used for solution comparison.
|
|
*
|
|
* @param[in] x independent variable
|
|
* @param[in,out] y dependent variable
|
|
*/
|
|
void exact_solution(const double *x, double *y)
|
|
{
|
|
y[0] = cos(x[0]);
|
|
y[1] = -sin(x[0]);
|
|
}
|
|
|
|
/**
|
|
* @brief Compute next step approximation using the midpoint-Euler
|
|
* method.
|
|
* @f[y_{n+1} = y_n + dx\, f\left(x_n+\frac{1}{2}dx,
|
|
* y_n + \frac{1}{2}dx\,f\left(x_n,y_n\right)\right)@f]
|
|
* @param[in] dx step size
|
|
* @param[in,out] x take @f$x_n@f$ and compute @f$x_{n+1}@f$
|
|
* @param[in,out] y take @f$y_n@f$ and compute @f$y_{n+1}@f$
|
|
* @param[in,out] dy compute @f$y_n+\frac{1}{2}dx\,f\left(x_n,y_n\right)@f$
|
|
*/
|
|
void midpoint_euler_step(double dx, double *x, double *y, double *dy)
|
|
{
|
|
problem(x, y, dy);
|
|
double tmp_x = (*x) + 0.5 * dx;
|
|
double tmp_y[order];
|
|
int o;
|
|
for (o = 0; o < order; o++) tmp_y[o] = y[o] + 0.5 * dx * dy[o];
|
|
|
|
problem(&tmp_x, tmp_y, dy);
|
|
|
|
for (o = 0; o < order; o++) y[o] += dx * dy[o];
|
|
}
|
|
|
|
/**
|
|
* @brief Compute approximation using the midpoint-Euler
|
|
* method in the given limits.
|
|
* @param[in] dx step size
|
|
* @param[in] x0 initial value of independent variable
|
|
* @param[in] x_max final value of independent variable
|
|
* @param[in,out] y take \f$y_n\f$ and compute \f$y_{n+1}\f$
|
|
* @param[in] save_to_file flag to save results to a CSV file (1) or not (0)
|
|
* @returns time taken for computation in seconds
|
|
*/
|
|
double midpoint_euler(double dx, double x0, double x_max, double *y,
|
|
char save_to_file)
|
|
{
|
|
double dy[order];
|
|
|
|
FILE *fp = NULL;
|
|
if (save_to_file)
|
|
{
|
|
fp = fopen("midpoint_euler.csv", "w+");
|
|
if (fp == NULL)
|
|
{
|
|
perror("Error! ");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* start integration */
|
|
clock_t t1 = clock();
|
|
double x = x0;
|
|
do // iterate for each step of independent variable
|
|
{
|
|
if (save_to_file && fp)
|
|
fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file
|
|
midpoint_euler_step(dx, &x, y, dy); // perform integration
|
|
x += dx; // update step
|
|
} while (x <= x_max); // till upper limit of independent variable
|
|
/* end of integration */
|
|
clock_t t2 = clock();
|
|
|
|
if (save_to_file && fp)
|
|
fclose(fp);
|
|
|
|
return (double)(t2 - t1) / CLOCKS_PER_SEC;
|
|
}
|
|
|
|
/**
|
|
Main Function
|
|
*/
|
|
int main(int argc, char *argv[])
|
|
{
|
|
double X0 = 0.f; /* initial value of x0 */
|
|
double X_MAX = 10.F; /* upper limit of integration */
|
|
double Y0[] = {1.f, 0.f}; /* initial value Y = y(x = x_0) */
|
|
double step_size;
|
|
|
|
if (argc == 1)
|
|
{
|
|
printf("\nEnter the step size: ");
|
|
scanf("%lg", &step_size);
|
|
}
|
|
else
|
|
// use commandline argument as independent variable step size
|
|
step_size = atof(argv[1]);
|
|
|
|
// get approximate solution
|
|
double total_time = midpoint_euler(step_size, X0, X_MAX, Y0, 1);
|
|
printf("\tTime = %.6g ms\n", total_time);
|
|
|
|
/* compute exact solution for comparion */
|
|
FILE *fp = fopen("exact.csv", "w+");
|
|
if (fp == NULL)
|
|
{
|
|
perror("Error! ");
|
|
return -1;
|
|
}
|
|
double x = X0;
|
|
double *y = &(Y0[0]);
|
|
printf("Finding exact solution\n");
|
|
clock_t t1 = clock();
|
|
|
|
do
|
|
{
|
|
fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file
|
|
exact_solution(&x, y);
|
|
x += step_size;
|
|
} while (x <= X_MAX);
|
|
|
|
clock_t t2 = clock();
|
|
total_time = (t2 - t1) / CLOCKS_PER_SEC;
|
|
printf("\tTime = %.6g ms\n", total_time);
|
|
fclose(fp);
|
|
|
|
return 0;
|
|
}
|