mirror of
https://github.com/TheAlgorithms/C
synced 2025-01-27 11:59:28 +03:00
253 lines
7.1 KiB
C
253 lines
7.1 KiB
C
/**
|
|
* @file
|
|
* \brief Compute all possible approximate roots of any given polynomial using
|
|
* [Durand Kerner
|
|
* algorithm](https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method)
|
|
*
|
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
|
*
|
|
* Test the algorithm online:
|
|
* https://gist.github.com/kvedala/27f1b0b6502af935f6917673ec43bcd7
|
|
*
|
|
* Try the highly unstable Wilkinson's polynomial:
|
|
* ```
|
|
* ./numerical_methods/durand_kerner_roots.c 1 -210 20615 -1256850 53327946
|
|
* -1672280820 40171771630 -756111184500 11310276995381 -135585182899530
|
|
* 1307535010540395 -10142299865511450 63030812099294896 -311333643161390640
|
|
* 1206647803780373360 -3599979517947607200 8037811822645051776
|
|
* -12870931245150988800 13803759753640704000 -8752948036761600000
|
|
* 2432902008176640000
|
|
* ```
|
|
* Sample implementation results to compute approximate roots of the equation
|
|
* \f$x^4-1=0\f$:\n
|
|
* <img
|
|
* src="https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/numerical_methods/durand_kerner_error.svg"
|
|
* width="400" alt="Error evolution during root approximations computed every
|
|
* iteration."/> <img
|
|
* src="https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/numerical_methods/durand_kerner_roots.svg"
|
|
* width="400" alt="Roots evolution - shows the initial approximation of the
|
|
* roots and their convergence to a final approximation along with the iterative
|
|
* approximations" />
|
|
*/
|
|
|
|
#include <complex.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#define ACCURACY 1e-10 /**< maximum accuracy limit */
|
|
|
|
/**
|
|
* Evaluate the value of a polynomial with given coefficients
|
|
* \param[in] coeffs coefficients of the polynomial
|
|
* \param[in] degree degree of polynomial
|
|
* \param[in] x point at which to evaluate the polynomial
|
|
* \returns \f$f(x)\f$
|
|
*/
|
|
long double complex poly_function(long double *coeffs, unsigned int degree,
|
|
long double complex x)
|
|
{
|
|
long double complex out = 0.;
|
|
unsigned int n;
|
|
|
|
for (n = 0; n < degree; n++) out += coeffs[n] * cpow(x, degree - n - 1);
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* create a textual form of complex number
|
|
* \param[in] x point at which to evaluate the polynomial
|
|
* \returns pointer to converted string
|
|
*/
|
|
const char *complex_str(long double complex x)
|
|
{
|
|
static char msg[50];
|
|
double r = creal(x);
|
|
double c = cimag(x);
|
|
|
|
sprintf(msg, "% 7.04g%+7.04gj", r, c);
|
|
|
|
return msg;
|
|
}
|
|
|
|
/**
|
|
* check for termination condition
|
|
* \param[in] delta point at which to evaluate the polynomial
|
|
* \returns 0 if termination not reached
|
|
* \returns 1 if termination reached
|
|
*/
|
|
char check_termination(long double delta)
|
|
{
|
|
static long double past_delta = INFINITY;
|
|
if (fabsl(past_delta - delta) <= ACCURACY || delta < ACCURACY)
|
|
return 1;
|
|
past_delta = delta;
|
|
return 0;
|
|
}
|
|
|
|
/***
|
|
* the comandline inputs are taken as coeffiecients of a polynomial
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
long double *coeffs = NULL;
|
|
long double complex *s0 = NULL;
|
|
unsigned int degree = 0;
|
|
unsigned int n, i;
|
|
|
|
if (argc < 2)
|
|
{
|
|
printf(
|
|
"Please pass the coefficients of the polynomial as commandline "
|
|
"arguments.\n");
|
|
return 0;
|
|
}
|
|
|
|
degree = argc - 1; /* detected polynomial degree */
|
|
coeffs = (long double *)malloc(
|
|
degree * sizeof(long double)); /* store all input coefficients */
|
|
s0 = (long double complex *)malloc(
|
|
(degree - 1) *
|
|
sizeof(long double complex)); /* number of roots = degree-1 */
|
|
|
|
/* initialize random seed: */
|
|
srand(time(NULL));
|
|
|
|
if (!coeffs || !s0)
|
|
{
|
|
perror("Unable to allocate memory!");
|
|
if (coeffs)
|
|
free(coeffs);
|
|
if (s0)
|
|
free(s0);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
#if defined(DEBUG) || !defined(NDEBUG)
|
|
/**
|
|
* store intermediate values to a CSV file
|
|
*/
|
|
FILE *log_file = fopen("durand_kerner.log.csv", "wt");
|
|
if (!log_file)
|
|
{
|
|
perror("Unable to create a storage log file!");
|
|
free(coeffs);
|
|
free(s0);
|
|
return EXIT_FAILURE;
|
|
}
|
|
fprintf(log_file, "iter#,");
|
|
#endif
|
|
|
|
printf("Computing the roots for:\n\t");
|
|
for (n = 0; n < degree; n++)
|
|
{
|
|
coeffs[n] = strtod(argv[n + 1], NULL);
|
|
if (n < degree - 1 && coeffs[n] != 0)
|
|
printf("(%Lg) x^%d + ", coeffs[n], degree - n - 1);
|
|
else if (coeffs[n] != 0)
|
|
printf("(%Lg) x^%d = 0\n", coeffs[n], degree - n - 1);
|
|
|
|
double tmp;
|
|
if (n > 0)
|
|
coeffs[n] /= tmp; /* numerical errors less when the first
|
|
coefficient is "1" */
|
|
else
|
|
{
|
|
tmp = coeffs[0];
|
|
coeffs[0] = 1;
|
|
}
|
|
|
|
/* initialize root approximations with random values */
|
|
if (n < degree - 1)
|
|
{
|
|
s0[n] = (long double)rand() + (long double)rand() * I;
|
|
#if defined(DEBUG) || !defined(NDEBUG)
|
|
fprintf(log_file, "root_%d,", n);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if defined(DEBUG) || !defined(NDEBUG)
|
|
fprintf(log_file, "avg. correction");
|
|
fprintf(log_file, "\n0,");
|
|
for (n = 0; n < degree - 1; n++)
|
|
fprintf(log_file, "%s,", complex_str(s0[n]));
|
|
#endif
|
|
|
|
double tol_condition = 1;
|
|
unsigned long iter = 0;
|
|
|
|
clock_t end_time, start_time = clock();
|
|
while (!check_termination(tol_condition) && iter < INT_MAX)
|
|
{
|
|
long double complex delta = 0;
|
|
tol_condition = 0;
|
|
iter++;
|
|
|
|
#if defined(DEBUG) || !defined(NDEBUG)
|
|
fprintf(log_file, "\n%ld,", iter);
|
|
#endif
|
|
|
|
for (n = 0; n < degree - 1; n++)
|
|
{
|
|
long double complex numerator =
|
|
poly_function(coeffs, degree, s0[n]);
|
|
long double complex denominator = 1.0;
|
|
for (i = 0; i < degree - 1; i++)
|
|
if (i != n)
|
|
denominator *= s0[n] - s0[i];
|
|
|
|
delta = numerator / denominator;
|
|
|
|
if (isnan(cabsl(delta)) || isinf(cabsl(delta)))
|
|
{
|
|
printf("\n\nOverflow/underrun error - got value = %Lg",
|
|
cabsl(delta));
|
|
goto end;
|
|
}
|
|
|
|
s0[n] -= delta;
|
|
|
|
tol_condition = fmaxl(tol_condition, fabsl(cabsl(delta)));
|
|
|
|
#if defined(DEBUG) || !defined(NDEBUG)
|
|
fprintf(log_file, "%s,", complex_str(s0[n]));
|
|
#endif
|
|
}
|
|
// tol_condition /= (degree - 1);
|
|
|
|
#if defined(DEBUG) || !defined(NDEBUG)
|
|
if (iter % 500 == 0)
|
|
{
|
|
printf("Iter: %lu\t", iter);
|
|
for (n = 0; n < degree - 1; n++) printf("\t%s", complex_str(s0[n]));
|
|
printf("\t\tabsolute average change: %.4g\n", tol_condition);
|
|
}
|
|
|
|
fprintf(log_file, "%.4g", tol_condition);
|
|
#endif
|
|
}
|
|
end:
|
|
|
|
end_time = clock();
|
|
|
|
#if defined(DEBUG) || !defined(NDEBUG)
|
|
fclose(log_file);
|
|
#endif
|
|
|
|
printf("\nIterations: %lu\n", iter);
|
|
for (n = 0; n < degree - 1; n++) printf("\t%s\n", complex_str(s0[n]));
|
|
printf("absolute average change: %.4g\n", tol_condition);
|
|
printf("Time taken: %.4g sec\n",
|
|
(end_time - start_time) / (double)CLOCKS_PER_SEC);
|
|
|
|
free(coeffs);
|
|
free(s0);
|
|
|
|
return 0;
|
|
}
|