TheAlgorithms-C/project_euler/problem_23/sol1.c

139 lines
2.9 KiB
C

/**
* \file
* \brief [Problem 23](https://projecteuler.net/problem=23) solution
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#ifdef _OPENMP
#include <omp.h>
#endif
/**
* Returns:
* -1 if N is deficient
* 1 if N is abundant
* 0 if N is perfect
*/
char get_perfect_number(unsigned long N)
{
unsigned long sum = 1;
char ret = 0;
for (unsigned long i = 2; i * i <= N; i++)
{
if (N % i == 0)
{
sum += i;
unsigned long tmp = N / i;
if (tmp != i)
{
sum += tmp;
}
}
}
ret = sum == N ? 0 : (sum > N ? 1 : -1);
// #ifdef DEBUG
// printf("%5lu: %5lu : %d\n", N, sum, ret);
// #endif
return ret;
}
/**
* Is the given number an abundant number (1) or not (0)
*/
unsigned long is_abundant(unsigned long N)
{
return get_perfect_number(N) == 1 ? 1 : 0;
}
/**
* Find the next abundant number after N and not including N
*/
unsigned long get_next_abundant(unsigned long N)
{
unsigned long i;
for (i = N + 1; !is_abundant(i); i++)
{
;
}
return i;
}
/**
* check if a given number can be represented as a sum
* of two abundant numbers.
* \returns 1 - if yes
* \returns 0 - if not
*/
char is_sum_of_abundant(unsigned long N)
{
/* optimized logic:
* i + j = N where both i and j should be abundant
* hence we can simply check for j = N - i as we loop through i
*/
for (unsigned long i = get_next_abundant(1); i <= (N >> 1);
i = get_next_abundant(i))
{
if (is_abundant(N - i))
{
#ifdef DEBUG
printf("\t%4lu + %4lu = %4lu\n", i, N - i, N);
#endif
return 1;
}
}
return 0;
}
/** Main function */
int main(int argc, char **argv)
{
unsigned long MAX_N = 28123; /* upper limit of numbers to check */
unsigned long sum = 0;
if (argc == 2)
{
MAX_N = strtoul(argv[1], NULL, 10);
}
#ifdef _OPENMP
printf("Using OpenMP parallleization with %d threads\n",
omp_get_max_threads());
#else
printf("Not using parallleization!\n");
#endif
double total_duration = 0.f;
long i;
#ifdef _OPENMP
#pragma omp parallel for reduction(+ : sum) schedule(runtime)
#endif
for (i = 1; i <= MAX_N; i++)
{
clock_t start_time = clock();
if (!is_sum_of_abundant(i))
{
sum += i;
}
clock_t end_time = clock();
total_duration += (double)(end_time - start_time) / CLOCKS_PER_SEC;
printf("... %5lu: %8lu\r", i, sum);
if (i % 100 == 0)
{
fflush(stdout);
}
}
printf("Time taken: %.4g s\n", total_duration);
printf(
"Sum of numbers that cannot be represented as sum of two abundant "
"numbers : %lu\n",
sum);
return 0;
}