mirror of https://github.com/TheAlgorithms/C
531 lines
17 KiB
C
531 lines
17 KiB
C
/**
|
|
* \file
|
|
* \brief [Kohonen self organizing
|
|
* map](https://en.wikipedia.org/wiki/Self-organizing_map) (data tracing)
|
|
*
|
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
|
*
|
|
* This example implements a powerful self organizing map algorithm.
|
|
* The algorithm creates a connected network of weights that closely
|
|
* follows the given data points. This this creates a chain of nodes that
|
|
* resembles the given input shape.
|
|
* \see kohonen_som_topology.c
|
|
*/
|
|
#define _USE_MATH_DEFINES /**< required for MS Visual C */
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#ifdef _OPENMP // check if OpenMP based parallellization is available
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
#ifndef max
|
|
#define max(a, b) \
|
|
(((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \
|
|
*/
|
|
#endif
|
|
#ifndef min
|
|
#define min(a, b) \
|
|
(((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \
|
|
*/
|
|
#endif
|
|
|
|
/**
|
|
* Helper function to generate a random number in a given interval.
|
|
* \n Steps:
|
|
* 1. `r1 = rand() % 100` gets a random number between 0 and 99
|
|
* 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99
|
|
* 3. scale and offset the random number to given range of \f$[a,b)\f$
|
|
* \f[
|
|
* y = (b - a) \times \frac{\text{(random number between 0 and RAND_MAX)} \;
|
|
* \text{mod}\; 100}{100} + a \f]
|
|
*
|
|
* \param[in] a lower limit
|
|
* \param[in] b upper limit
|
|
* \returns random number in the range \f$[a,b)\f$
|
|
*/
|
|
double _random(double a, double b)
|
|
{
|
|
return ((b - a) * (rand() % 100) / 100.f) + a;
|
|
}
|
|
|
|
/**
|
|
* Save a given n-dimensional data martix to file.
|
|
*
|
|
* \param[in] fname filename to save in (gets overwriten without confirmation)
|
|
* \param[in] X matrix to save
|
|
* \param[in] num_points rows in the matrix = number of points
|
|
* \param[in] num_features columns in the matrix = dimensions of points
|
|
* \returns 0 if all ok
|
|
* \returns -1 if file creation failed
|
|
*/
|
|
int save_nd_data(const char *fname, double **X, int num_points,
|
|
int num_features)
|
|
{
|
|
FILE *fp = fopen(fname, "wt");
|
|
if (!fp) // error with fopen
|
|
{
|
|
char msg[120];
|
|
sprintf(msg, "File error (%s): ", fname);
|
|
perror(msg);
|
|
return -1;
|
|
}
|
|
|
|
for (int i = 0; i < num_points; i++) // for each point in the array
|
|
{
|
|
for (int j = 0; j < num_features; j++) // for each feature in the array
|
|
{
|
|
fprintf(fp, "%.4g", X[i][j]); // print the feature value
|
|
if (j < num_features - 1) // if not the last feature
|
|
fprintf(fp, ","); // suffix comma
|
|
}
|
|
if (i < num_points - 1) // if not the last row
|
|
fprintf(fp, "\n"); // start a new line
|
|
}
|
|
fclose(fp);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get minimum value and index of the value in a vector
|
|
* \param[in] x vector to search
|
|
* \param[in] N number of points in the vector
|
|
* \param[out] val minimum value found
|
|
* \param[out] idx index where minimum value was found
|
|
*/
|
|
void get_min_1d(double const *X, int N, double *val, int *idx)
|
|
{
|
|
val[0] = INFINITY; // initial min value
|
|
|
|
for (int i = 0; i < N; i++) // check each value
|
|
{
|
|
if (X[i] < val[0]) // if a lower value is found
|
|
{ // save the value and its index
|
|
idx[0] = i;
|
|
val[0] = X[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Update weights of the SOM using Kohonen algorithm
|
|
*
|
|
* \param[in] X data point
|
|
* \param[in,out] W weights matrix
|
|
* \param[in,out] D temporary vector to store distances
|
|
* \param[in] num_out number of output points
|
|
* \param[in] num_features number of features per input sample
|
|
* \param[in] alpha learning rate \f$0<\alpha\le1\f$
|
|
* \param[in] R neighborhood range
|
|
*/
|
|
void update_weights(double const *x, double *const *W, double *D, int num_out,
|
|
int num_features, double alpha, int R)
|
|
{
|
|
int j, k;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
// step 1: for each output point
|
|
for (j = 0; j < num_out; j++)
|
|
{
|
|
D[j] = 0.f;
|
|
// compute Euclidian distance of each output
|
|
// point from the current sample
|
|
for (k = 0; k < num_features; k++)
|
|
D[j] += (W[j][k] - x[k]) * (W[j][k] - x[k]);
|
|
}
|
|
|
|
// step 2: get closest node i.e., node with snallest Euclidian distance to
|
|
// the current pattern
|
|
int d_min_idx;
|
|
double d_min;
|
|
get_min_1d(D, num_out, &d_min, &d_min_idx);
|
|
|
|
// step 3a: get the neighborhood range
|
|
int from_node = max(0, d_min_idx - R);
|
|
int to_node = min(num_out, d_min_idx + R + 1);
|
|
|
|
// step 3b: update the weights of nodes in the
|
|
// neighborhood
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (j = from_node; j < to_node; j++)
|
|
for (k = 0; k < num_features; k++)
|
|
// update weights of nodes in the neighborhood
|
|
W[j][k] += alpha * (x[k] - W[j][k]);
|
|
}
|
|
|
|
/**
|
|
* Apply incremental algorithm with updating neighborhood and learning rates
|
|
* on all samples in the given datset.
|
|
*
|
|
* \param[in] X data set
|
|
* \param[in,out] W weights matrix
|
|
* \param[in] D temporary vector to store distances
|
|
* \param[in] num_samples number of output points
|
|
* \param[in] num_features number of features per input sample
|
|
* \param[in] num_out number of output points
|
|
* \param[in] alpha_min terminal value of alpha
|
|
*/
|
|
void kohonen_som_tracer(double **X, double *const *W, int num_samples,
|
|
int num_features, int num_out, double alpha_min)
|
|
{
|
|
int R = num_out >> 2, iter = 0;
|
|
double alpha = 1.f;
|
|
double *D = (double *)malloc(num_out * sizeof(double));
|
|
|
|
// Loop alpha from 1 to slpha_min
|
|
for (; alpha > alpha_min; alpha -= 0.01, iter++)
|
|
{
|
|
// Loop for each sample pattern in the data set
|
|
for (int sample = 0; sample < num_samples; sample++)
|
|
{
|
|
const double *x = X[sample];
|
|
// update weights for the current input pattern sample
|
|
update_weights(x, W, D, num_out, num_features, alpha, R);
|
|
}
|
|
|
|
// every 10th iteration, reduce the neighborhood range
|
|
if (iter % 10 == 0 && R > 1)
|
|
R--;
|
|
}
|
|
|
|
free(D);
|
|
}
|
|
|
|
/** Creates a random set of points distributed *near* the circumference
|
|
* of a circle and trains an SOM that finds that circular pattern. The
|
|
* generating function is
|
|
* \f{eqnarray*}{
|
|
* r &\in& [1-\delta r, 1+\delta r)\\
|
|
* \theta &\in& [0, 2\pi)\\
|
|
* x &=& r\cos\theta\\
|
|
* y &=& r\sin\theta
|
|
* \f}
|
|
*
|
|
* \param[out] data matrix to store data in
|
|
* \param[in] N number of points required
|
|
*/
|
|
void test_circle(double *const *data, int N)
|
|
{
|
|
const double R = 0.75, dr = 0.3;
|
|
double a_t = 0., b_t = 2.f * M_PI; // theta random between 0 and 2*pi
|
|
double a_r = R - dr, b_r = R + dr; // radius random between R-dr and R+dr
|
|
int i;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (i = 0; i < N; i++)
|
|
{
|
|
double r = _random(a_r, b_r); // random radius
|
|
double theta = _random(a_t, b_t); // random theta
|
|
data[i][0] = r * cos(theta); // convert from polar to cartesian
|
|
data[i][1] = r * sin(theta);
|
|
}
|
|
}
|
|
|
|
/** Test that creates a random set of points distributed *near* the
|
|
* circumference of a circle and trains an SOM that finds that circular pattern.
|
|
* The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values)
|
|
* files are created to validate the execution:
|
|
* * `test1.csv`: random test samples points with a circular pattern
|
|
* * `w11.csv`: initial random map
|
|
* * `w12.csv`: trained SOM map
|
|
*
|
|
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
|
* the following snippet
|
|
* ```gnuplot
|
|
* set datafile separator ','
|
|
* plot "test1.csv" title "original", \
|
|
* "w11.csv" title "w1", \
|
|
* "w12.csv" title "w2"
|
|
* ```
|
|
* ![Sample execution
|
|
* output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test1.svg)
|
|
*/
|
|
void test1()
|
|
{
|
|
int j, N = 500;
|
|
int features = 2;
|
|
int num_out = 50;
|
|
|
|
// 2D space, hence size = number of rows * 2
|
|
double **X = (double **)malloc(N * sizeof(double *));
|
|
|
|
// number of clusters nodes * 2
|
|
double **W = (double **)malloc(num_out * sizeof(double *));
|
|
|
|
for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out)
|
|
{
|
|
if (i < N) // only add new arrays if i < N
|
|
X[i] = (double *)malloc(features * sizeof(double));
|
|
if (i < num_out) // only add new arrays if i < num_out
|
|
{
|
|
W[i] = (double *)malloc(features * sizeof(double));
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
// preallocate with random initial weights
|
|
for (j = 0; j < features; j++)
|
|
W[i][j] = _random(-1, 1);
|
|
}
|
|
}
|
|
|
|
test_circle(X, N); // create test data around circumference of a circle
|
|
save_nd_data("test1.csv", X, N, features); // save test data points
|
|
save_nd_data("w11.csv", W, num_out,
|
|
features); // save initial random weights
|
|
kohonen_som_tracer(X, W, N, features, num_out, 0.1); // train the SOM
|
|
save_nd_data("w12.csv", W, num_out, features); // save the resultant weights
|
|
|
|
for (int i = 0; i < max(num_out, N); i++)
|
|
{
|
|
if (i < N)
|
|
free(X[i]);
|
|
if (i < num_out)
|
|
free(W[i]);
|
|
}
|
|
}
|
|
|
|
/** Creates a random set of points distributed *near* the locus
|
|
* of the [Lamniscate of
|
|
* Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono).
|
|
* \f{eqnarray*}{
|
|
* \delta r &=& 0.2\\
|
|
* \delta x &\in& [-\delta r, \delta r)\\
|
|
* \delta y &\in& [-\delta r, \delta r)\\
|
|
* \theta &\in& [0, \pi)\\
|
|
* x &=& \delta x + \cos\theta\\
|
|
* y &=& \delta y + \frac{\sin(2\theta)}{2}
|
|
* \f}
|
|
* \param[out] data matrix to store data in
|
|
* \param[in] N number of points required
|
|
*/
|
|
void test_lamniscate(double *const *data, int N)
|
|
{
|
|
const double dr = 0.2;
|
|
int i;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (i = 0; i < N; i++)
|
|
{
|
|
double dx = _random(-dr, dr); // random change in x
|
|
double dy = _random(-dr, dr); // random change in y
|
|
double theta = _random(0, M_PI); // random theta
|
|
data[i][0] = dx + cos(theta); // convert from polar to cartesian
|
|
data[i][1] = dy + sin(2. * theta) / 2.f;
|
|
}
|
|
}
|
|
|
|
/** Test that creates a random set of points distributed *near* the locus
|
|
* of the [Lamniscate of
|
|
* Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono) and trains an SOM
|
|
* that finds that circular pattern. The following
|
|
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
|
|
* to validate the execution:
|
|
* * `test2.csv`: random test samples points with a lamniscate pattern
|
|
* * `w21.csv`: initial random map
|
|
* * `w22.csv`: trained SOM map
|
|
*
|
|
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
|
* the following snippet
|
|
* ```gnuplot
|
|
* set datafile separator ','
|
|
* plot "test2.csv" title "original", \
|
|
* "w21.csv" title "w1", \
|
|
* "w22.csv" title "w2"
|
|
* ```
|
|
* ![Sample execution
|
|
* output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test2.svg)
|
|
*/
|
|
void test2()
|
|
{
|
|
int j, N = 500;
|
|
int features = 2;
|
|
int num_out = 20;
|
|
double **X = (double **)malloc(N * sizeof(double *));
|
|
double **W = (double **)malloc(num_out * sizeof(double *));
|
|
for (int i = 0; i < max(num_out, N); i++)
|
|
{
|
|
if (i < N) // only add new arrays if i < N
|
|
X[i] = (double *)malloc(features * sizeof(double));
|
|
if (i < num_out) // only add new arrays if i < num_out
|
|
{
|
|
W[i] = (double *)malloc(features * sizeof(double));
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
// preallocate with random initial weights
|
|
for (j = 0; j < features; j++)
|
|
W[i][j] = _random(-1, 1);
|
|
}
|
|
}
|
|
|
|
test_lamniscate(X, N); // create test data around the lamniscate
|
|
save_nd_data("test2.csv", X, N, features); // save test data points
|
|
save_nd_data("w21.csv", W, num_out,
|
|
features); // save initial random weights
|
|
kohonen_som_tracer(X, W, N, features, num_out, 0.01); // train the SOM
|
|
save_nd_data("w22.csv", W, num_out, features); // save the resultant weights
|
|
|
|
for (int i = 0; i < max(num_out, N); i++)
|
|
{
|
|
if (i < N)
|
|
free(X[i]);
|
|
if (i < num_out)
|
|
free(W[i]);
|
|
}
|
|
free(X);
|
|
free(W);
|
|
}
|
|
|
|
/** Creates a random set of points distributed in four clusters in
|
|
* 3D space with centroids at the points
|
|
* * \f$(0,5, 0.5, 0.5)\f$
|
|
* * \f$(0,5,-0.5, -0.5)\f$
|
|
* * \f$(-0,5, 0.5, 0.5)\f$
|
|
* * \f$(-0,5,-0.5, -0.5)\f$
|
|
*
|
|
* \param[out] data matrix to store data in
|
|
* \param[in] N number of points required
|
|
*/
|
|
void test_3d_classes(double *const *data, int N)
|
|
{
|
|
const double R = 0.1; // radius of cluster
|
|
int i;
|
|
const int num_classes = 4;
|
|
const double centres[][3] = {
|
|
// centres of each class cluster
|
|
{.5, .5, .5}, // centre of class 1
|
|
{.5, -.5, -.5}, // centre of class 2
|
|
{-.5, .5, .5}, // centre of class 3
|
|
{-.5, -.5 - .5} // centre of class 4
|
|
};
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (i = 0; i < N; i++)
|
|
{
|
|
int class = rand() % num_classes; // select a random class for the point
|
|
|
|
// create random coordinates (x,y,z) around the centre of the class
|
|
data[i][0] = _random(centres[class][0] - R, centres[class][0] + R);
|
|
data[i][1] = _random(centres[class][1] - R, centres[class][1] + R);
|
|
data[i][2] = _random(centres[class][2] - R, centres[class][2] + R);
|
|
|
|
/* The follosing can also be used
|
|
for (int j = 0; j < 3; j++)
|
|
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
|
|
*/
|
|
}
|
|
}
|
|
|
|
/** Test that creates a random set of points distributed in six clusters in
|
|
* 3D space. The following
|
|
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
|
|
* to validate the execution:
|
|
* * `test3.csv`: random test samples points with a circular pattern
|
|
* * `w31.csv`: initial random map
|
|
* * `w32.csv`: trained SOM map
|
|
*
|
|
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
|
* the following snippet
|
|
* ```gnuplot
|
|
* set datafile separator ','
|
|
* plot "test3.csv" title "original", \
|
|
* "w31.csv" title "w1", \
|
|
* "w32.csv" title "w2"
|
|
* ```
|
|
* ![Sample execution
|
|
* output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test3.svg)
|
|
*/
|
|
void test3()
|
|
{
|
|
int j, N = 200;
|
|
int features = 3;
|
|
int num_out = 20;
|
|
double **X = (double **)malloc(N * sizeof(double *));
|
|
double **W = (double **)malloc(num_out * sizeof(double *));
|
|
for (int i = 0; i < max(num_out, N); i++)
|
|
{
|
|
if (i < N) // only add new arrays if i < N
|
|
X[i] = (double *)malloc(features * sizeof(double));
|
|
if (i < num_out) // only add new arrays if i < num_out
|
|
{
|
|
W[i] = (double *)malloc(features * sizeof(double));
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
// preallocate with random initial weights
|
|
for (j = 0; j < features; j++)
|
|
W[i][j] = _random(-1, 1);
|
|
}
|
|
}
|
|
|
|
test_3d_classes(X, N); // create test data around the lamniscate
|
|
save_nd_data("test3.csv", X, N, features); // save test data points
|
|
save_nd_data("w31.csv", W, num_out,
|
|
features); // save initial random weights
|
|
kohonen_som_tracer(X, W, N, features, num_out, 0.01); // train the SOM
|
|
save_nd_data("w32.csv", W, num_out, features); // save the resultant weights
|
|
|
|
for (int i = 0; i < max(num_out, N); i++)
|
|
{
|
|
if (i < N)
|
|
free(X[i]);
|
|
if (i < num_out)
|
|
free(W[i]);
|
|
}
|
|
free(X);
|
|
free(W);
|
|
}
|
|
|
|
/**
|
|
* Convert clock cycle difference to time in seconds
|
|
*
|
|
* \param[in] start_t start clock
|
|
* \param[in] end_t end clock
|
|
* \returns time difference in seconds
|
|
*/
|
|
double get_clock_diff(clock_t start_t, clock_t end_t)
|
|
{
|
|
return (double)(end_t - start_t) / (double)CLOCKS_PER_SEC;
|
|
}
|
|
|
|
/** Main function */
|
|
int main(int argc, char **argv)
|
|
{
|
|
#ifdef _OPENMP
|
|
printf("Using OpenMP based parallelization\n");
|
|
#else
|
|
printf("NOT using OpenMP based parallelization\n");
|
|
#endif
|
|
clock_t start_clk = clock();
|
|
test1();
|
|
clock_t end_clk = clock();
|
|
printf("Test 1 completed in %.4g sec\n",
|
|
get_clock_diff(start_clk, end_clk));
|
|
start_clk = clock();
|
|
test2();
|
|
end_clk = clock();
|
|
printf("Test 2 completed in %.4g sec\n",
|
|
get_clock_diff(start_clk, end_clk));
|
|
start_clk = clock();
|
|
test3();
|
|
end_clk = clock();
|
|
printf("Test 3 completed in %.4g sec\n",
|
|
get_clock_diff(start_clk, end_clk));
|
|
printf("(Note: Calculated times include: creating test sets, training "
|
|
"model and writing files to disk.)\n\n");
|
|
return 0;
|
|
}
|