TheAlgorithms-C/project_euler/problem_401/sol1.c

156 lines
3.2 KiB
C

/**
* \file
* \brief [Problem 401](https://projecteuler.net/problem=401) solution -
* Sum of squares of divisors
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#define MOD_LIMIT (uint64_t)1e9 /**< modulo limit */
#define MAX_LENGTH 5000 /**< chunk size of array allocation */
/**
* Check if a number is present in given array
* \param[in] N number to check
* \param[in] D array to check
* \param[in] L length of array
* \returns 1 if present
* \returns 0 if absent
*/
char is_in(uint64_t N, uint64_t *D, uint64_t L)
{
uint64_t i;
for (i = 0; i < L; i++)
{
if (D[i] == N)
{
return 1;
}
}
return 0;
}
/**
* Get all integer divisors of a number
* \param[in] N number to find divisors for
* \param[out] D array to store divisors in
* \returns number of divisors found
*/
uint64_t get_divisors(uint64_t N, uint64_t *D)
{
uint64_t q, r;
int64_t i, num = 0;
if (N == 1)
{
D[0] = 1;
return 1;
}
// search till sqrt(N)
// because after this, the pair of divisors will repeat themselves
for (i = 1; i * i <= N + 1; i++)
{
r = N % i; // get reminder
// reminder = 0 if 'i' is a divisor of 'N'
if (r == 0)
{
q = N / i;
if (!is_in(i, D, num)) // if divisor was already stored
{
D[num] = i;
num++;
}
if (!is_in(q, D, num)) // if divisor was already stored
{
D[num] = q;
num++;
}
}
if (num == MAX_LENGTH)
{ // limit of array reached, allocate more space
D = (uint64_t *)realloc(D, MAX_LENGTH * sizeof(uint64_t) << 1);
}
}
return num;
}
/**
* compute sum of squares of all integer factors of a number
* \param[in] N
* \returns sum of squares
*/
uint64_t sigma2(uint64_t N)
{
uint64_t sum = 0, L;
int64_t i;
uint64_t *D = (uint64_t *)malloc(MAX_LENGTH * sizeof(uint64_t));
L = get_divisors(N, D);
for (i = 1; i < L; i++)
{
uint64_t DD = (D[i] * D[i]) % MOD_LIMIT;
sum += DD;
}
free(D);
return sum % MOD_LIMIT;
}
/**
* sum of squares of factors of numbers
* from 1 thru N
*/
uint64_t sigma(uint64_t N)
{
uint64_t s, sum = 0;
int64_t i;
#ifdef _OPENMP
// parallelize on threads
#pragma omp parallel for reduction(+ : sum)
#endif
for (i = 0; i <= N; i++)
{
s = sigma2(i);
sum += s;
}
return sum % MOD_LIMIT;
}
/** Main function */
int main(int argc, char **argv)
{
uint64_t N = 1000;
if (argc == 2)
{
N = strtoll(argv[1], NULL, 10);
}
else if (argc > 2)
{
fprintf(stderr, "Wrong number of input arguments!\n");
printf("Usage:\t ./sol1.c [N=1000]");
return -1;
}
clock_t start_time = clock();
uint64_t result = sigma(N);
double dtime = clock() - start_time;
printf("N = %" PRIu64 "\nSum: %" PRIu64 "\n", N, result);
printf("Time taken: %.4gms\n", dtime * 1e3 / CLOCKS_PER_SEC);
return 0;
}