mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-22 13:31:21 +03:00
db3d6e2886
Signed-off-by: realstealthninja <realstealthninja@gmail.com> Co-authored-by: github-actions[bot] <github-actions@users.noreply.github.com> Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
120 lines
2.9 KiB
C
120 lines
2.9 KiB
C
/**
|
|
* @file
|
|
* @brief [Matrix Chain
|
|
* Order](https://en.wikipedia.org/wiki/Matrix_chain_multiplication)
|
|
* @details
|
|
* From Wikipedia: Matrix chain multiplication (or the matrix chain ordering
|
|
* problem) is an optimization problem concerning the most efficient way to
|
|
* multiply a given sequence of matrices. The problem is not actually to perform
|
|
* the multiplications, but merely to decide the sequence of the matrix
|
|
* multiplications involved.
|
|
* @author [CascadingCascade](https://github.com/CascadingCascade)
|
|
*/
|
|
|
|
#include <assert.h> /// for assert
|
|
#include <limits.h> /// for INT_MAX macro
|
|
#include <stdio.h> /// for IO operations
|
|
#include <stdlib.h> /// for malloc() and free()
|
|
|
|
/**
|
|
* @brief Finds the optimal sequence using the classic O(n^3) algorithm.
|
|
* @param l length of cost array
|
|
* @param p costs of each matrix
|
|
* @param s location to store results
|
|
* @returns number of operations
|
|
*/
|
|
int matrixChainOrder(int l, const int *p, int *s)
|
|
{
|
|
// mat stores the cost for a chain that starts at i and ends on j (inclusive
|
|
// on both ends)
|
|
int **mat = malloc(l * sizeof(int *));
|
|
for (int i = 0; i < l; ++i)
|
|
{
|
|
mat[i] = malloc(l * sizeof(int));
|
|
}
|
|
|
|
for (int i = 0; i < l; ++i)
|
|
{
|
|
mat[i][i] = 0;
|
|
}
|
|
// cl denotes the difference between start / end indices, cl + 1 would be
|
|
// chain length.
|
|
for (int cl = 1; cl < l; ++cl)
|
|
{
|
|
for (int i = 0; i < l - cl; ++i)
|
|
{
|
|
int j = i + cl;
|
|
mat[i][j] = INT_MAX;
|
|
for (int div = i; div < j; ++div)
|
|
{
|
|
int q = mat[i][div] + mat[div + 1][j] + p[i] * p[div] * p[j];
|
|
if (q < mat[i][j])
|
|
{
|
|
mat[i][j] = q;
|
|
s[i * l + j] = div;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
int result = mat[0][l - 1];
|
|
|
|
// Free dynamically allocated memory
|
|
for (int i = 0; i < l; ++i)
|
|
{
|
|
free(mat[i]);
|
|
}
|
|
free(mat);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @brief Recursively prints the solution
|
|
* @param l dimension of the solutions array
|
|
* @param s solutions
|
|
* @param i starting index
|
|
* @param j ending index
|
|
* @returns void
|
|
*/
|
|
void printSolution(int l, int *s, int i, int j)
|
|
{
|
|
if (i == j)
|
|
{
|
|
printf("A%d", i);
|
|
return;
|
|
}
|
|
putchar('(');
|
|
printSolution(l, s, i, s[i * l + j]);
|
|
printSolution(l, s, s[i * l + j] + 1, j);
|
|
putchar(')');
|
|
}
|
|
|
|
/**
|
|
* @brief Self-test implementations
|
|
* @returns void
|
|
*/
|
|
static void test()
|
|
{
|
|
int sizes[] = {35, 15, 5, 10, 20, 25};
|
|
int len = 6;
|
|
int *sol = malloc(len * len * sizeof(int));
|
|
int r = matrixChainOrder(len, sizes, sol);
|
|
assert(r == 18625);
|
|
printf("Result : %d\n", r);
|
|
printf("Optimal ordering : ");
|
|
printSolution(len, sol, 0, 5);
|
|
free(sol);
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @returns 0
|
|
*/
|
|
int main()
|
|
{
|
|
test(); // run self-test implementations
|
|
return 0;
|
|
}
|