// C program for Kruskal's algorithm to find Minimum Spanning Tree // of a given connected, undirected and weighted graph #include #include #include // a structure to represent a weighted edge in graph struct Edge { int src, dest, weight; }; // a structure to represent a connected, undirected // and weighted graph struct Graph { // V-> Number of vertices, E-> Number of edges int V, E; // graph is represented as an array of edges. // Since the graph is undirected, the edge // from src to dest is also edge from dest // to src. Both are counted as 1 edge here. struct Edge *edge; }; // Creates a graph with V vertices and E edges struct Graph *createGraph(int V, int E) { struct Graph* graph = (struct Graph*)(malloc(sizeof(struct Graph))); graph->V = V; graph->E = E; graph->edge = (struct Edge*)malloc(sizeof(struct Edge) * E); return graph; } // A structure to represent a subset for union-find struct subset { int parent; int rank; }; // A utility function to find set of an element i // (uses path compression technique) int find(struct subset subsets[], int i) { // find root and make root as parent of i // (path compression) if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } // A function that does union of two sets of x and y // (uses union by rank) void Union(struct subset subsets[], int x, int y) { int xroot = find(subsets, x); int yroot = find(subsets, y); // Attach smaller rank tree under root of high // rank tree (Union by Rank) if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[xroot].rank > subsets[yroot].rank) subsets[yroot].parent = xroot; // If ranks are same, then make one as root and // increment its rank by one else { subsets[yroot].parent = xroot; subsets[xroot].rank++; } } // Compare two edges according to their weights. // Used in qsort() for sorting an array of edges int myComp(const void *a, const void *b) { struct Edge *a1 = (struct Edge *)a; struct Edge *b1 = (struct Edge *)b; return a1->weight > b1->weight; } // The main function to construct MST using Kruskal's algorithm void KruskalMST(struct Graph *graph) { int V = graph->V; struct Edge result[V]; // Tnis will store the resultant MST int e = 0; // An index variable, used for result[] int i = 0; // An index variable, used for sorted edges // Step 1: Sort all the edges in non-decreasing // order of their weight. If we are not allowed to // change the given graph, we can create a copy of // array of edges qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp); // Allocate memory for creating V ssubsets struct subset *subsets = (struct subset *)malloc(V * sizeof(struct subset)); // Create V subsets with single elements for (int v = 0; v < V; ++v) { subsets[v].parent = v; subsets[v].rank = 0; } // Number of edges to be taken is equal to V-1 while (e < V - 1 && i < graph->E) { // Step 2: Pick the smallest edge. And increment // the index for next iteration struct Edge next_edge = graph->edge[i++]; int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); // If including this edge does't cause cycle, // include it in result and increment the index // of result for next edge if (x != y) { result[e++] = next_edge; Union(subsets, x, y); } // Else discard the next_edge } // print the contents of result[] to display the // built MST printf("Following are the edges in the constructed MST\n"); for (i = 0; i < e; ++i) printf("%d -- %d == %d\n", result[i].src, result[i].dest, result[i].weight); return; } // Driver program to test above functions int main() { /* Let us create following weighted graph 10 0--------1 | \ | 6| 5\ |15 | \ | 2--------3 4 */ int V = 4; // Number of vertices in graph int E = 5; // Number of edges in graph struct Graph *graph = createGraph(V, E); // add edge 0-1 graph->edge[0].src = 0; graph->edge[0].dest = 1; graph->edge[0].weight = 10; // add edge 0-2 graph->edge[1].src = 0; graph->edge[1].dest = 2; graph->edge[1].weight = 6; // add edge 0-3 graph->edge[2].src = 0; graph->edge[2].dest = 3; graph->edge[2].weight = 5; // add edge 1-3 graph->edge[3].src = 1; graph->edge[3].dest = 3; graph->edge[3].weight = 15; // add edge 2-3 graph->edge[4].src = 2; graph->edge[4].dest = 3; graph->edge[4].weight = 4; KruskalMST(graph); return 0; }