/** * @addtogroup hash Hash algorithms * @{ * @file * @author [Daniel Murrow](https://github.com/dsmurrow) * @brief [Blake2b cryptographic hash * function](https://www.rfc-editor.org/rfc/rfc7693) * * The Blake2b cryptographic hash function provides * hashes for data that are secure enough to be used in * cryptographic applications. It is designed to perform * optimally on 64-bit platforms. The algorithm can output * digests between 1 and 64 bytes long, for messages up to * 128 bits in length. Keyed hashing is also supported for * keys up to 64 bytes in length. */ #include /// for asserts #include /// for fixed-width integer types e.g. uint64_t and uint8_t #include /// for IO #include /// for malloc, calloc, and free. As well as size_t /* Warning suppressed is in blake2b() function, more * details are over there */ #ifdef __GNUC__ #pragma GCC diagnostic ignored "-Wshift-count-overflow" #elif _MSC_VER #pragma warning(disable : 4293) #endif /** * @brief the size of a data block in bytes */ #define bb 128 /** * @brief max key length for BLAKE2b */ #define KK_MAX 64 /** * @brief max length of BLAKE2b digest in bytes */ #define NN_MAX 64 /** * @brief ceiling division macro without floats * * @param a dividend * @param b divisor */ #define CEIL(a, b) (((a) / (b)) + ((a) % (b) != 0)) /** * @brief returns minimum value */ #define MIN(a, b) ((a) < (b) ? (a) : (b)) /** * @brief returns maximum value */ #define MAX(a, b) ((a) > (b) ? (a) : (b)) /** * @brief macro to rotate 64-bit ints to the right * Ripped from RFC 7693 */ #define ROTR64(n, offset) (((n) >> (offset)) ^ ((n) << (64 - (offset)))) /** * @brief zero-value initializer for u128 type */ #define U128_ZERO \ { \ 0, 0 \ } /** 128-bit number represented as two uint64's */ typedef uint64_t u128[2]; /** Padded input block containing bb bytes */ typedef uint64_t block_t[bb / sizeof(uint64_t)]; static const uint8_t R1 = 32; ///< Rotation constant 1 for mixing function G static const uint8_t R2 = 24; ///< Rotation constant 2 for mixing function G static const uint8_t R3 = 16; ///< Rotation constant 3 for mixing function G static const uint8_t R4 = 63; ///< Rotation constant 4 for mixing function G static const uint64_t blake2b_iv[8] = { 0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1, 0x510E527FADE682D1, 0x9B05688C2B3E6C1F, 0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179}; ///< BLAKE2b Initialization vector ///< blake2b_iv[i] = floor(2**64 * ///< frac(sqrt(prime(i+1)))), ///< where prime(i) is the i:th ///< prime number static const uint8_t blake2b_sigma[12][16] = { {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3}, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4}, {7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8}, {9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13}, {2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9}, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11}, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10}, {6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5}, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3}}; ///< word schedule permutations for each round of the algorithm /** * @brief put value of n into dest * * @param dest 128-bit number to get copied from n * @param n value put into dest * * @returns void */ static inline void u128_fill(u128 dest, size_t n) { dest[0] = n & UINT64_MAX; if (sizeof(n) > 8) { /* The C standard does not specify a maximum length for size_t, * although most machines implement it to be the same length as * uint64_t. On machines where size_t is 8 bytes long this will issue a * compiler warning, which is why it is suppressed. But on a machine * where size_t is greater than 8 bytes, this will work as normal. */ dest[1] = n >> 64; } else { dest[1] = 0; } } /** * @brief increment an 128-bit number by a given amount * * @param dest the value being incremented * @param n what dest is being increased by * * @returns void */ static inline void u128_increment(u128 dest, uint64_t n) { /* Check for overflow */ if (UINT64_MAX - dest[0] <= n) { dest[1]++; } dest[0] += n; } /** * @brief blake2b mixing function G * * Shuffles values in block v depending on * provided indeces a, b, c, and d. x and y * are also mixed into the block. * * @param v array of words to be mixed * @param a first index * @param b second index * @param c third index * @param d fourth index * @param x first word being mixed into v * @param y second word being mixed into y * * @returns void */ static void G(block_t v, uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint64_t x, uint64_t y) { v[a] += v[b] + x; v[d] = ROTR64(v[d] ^ v[a], R1); v[c] += v[d]; v[b] = ROTR64(v[b] ^ v[c], R2); v[a] += v[b] + y; v[d] = ROTR64(v[d] ^ v[a], R3); v[c] += v[d]; v[b] = ROTR64(v[b] ^ v[c], R4); } /** * @brief compression function F * * Securely mixes the values in block m into * the state vector h. Value at v[14] is also * inverted if this is the final block to be * compressed. * * @param h the state vector * @param m message vector to be compressed into h * @param t 128-bit offset counter * @param f flag to indicate whether this is the final block * * @returns void */ static void F(uint64_t h[8], block_t m, u128 t, int f) { int i; block_t v; /* v[0..7] := h[0..7] */ for (i = 0; i < 8; i++) { v[i] = h[i]; } /* v[8..15] := IV[0..7] */ for (; i < 16; i++) { v[i] = blake2b_iv[i - 8]; } v[12] ^= t[0]; /* v[12] ^ (t mod 2**w) */ v[13] ^= t[1]; /* v[13] ^ (t >> w) */ if (f) { v[14] = ~v[14]; } for (i = 0; i < 12; i++) { const uint8_t *s = blake2b_sigma[i]; G(v, 0, 4, 8, 12, m[s[0]], m[s[1]]); G(v, 1, 5, 9, 13, m[s[2]], m[s[3]]); G(v, 2, 6, 10, 14, m[s[4]], m[s[5]]); G(v, 3, 7, 11, 15, m[s[6]], m[s[7]]); G(v, 0, 5, 10, 15, m[s[8]], m[s[9]]); G(v, 1, 6, 11, 12, m[s[10]], m[s[11]]); G(v, 2, 7, 8, 13, m[s[12]], m[s[13]]); G(v, 3, 4, 9, 14, m[s[14]], m[s[15]]); } for (i = 0; i < 8; i++) { h[i] ^= v[i] ^ v[i + 8]; } } /** * @brief driver function to perform the hashing as described in specification * * pseudocode: (credit to authors of RFC 7693 listed above) * FUNCTION BLAKE2( d[0..dd-1], ll, kk, nn ) * | * | h[0..7] := IV[0..7] // Initialization Vector. * | * | // Parameter block p[0] * | h[0] := h[0] ^ 0x01010000 ^ (kk << 8) ^ nn * | * | // Process padded key and data blocks * | IF dd > 1 THEN * | | FOR i = 0 TO dd - 2 DO * | | | h := F( h, d[i], (i + 1) * bb, FALSE ) * | | END FOR. * | END IF. * | * | // Final block. * | IF kk = 0 THEN * | | h := F( h, d[dd - 1], ll, TRUE ) * | ELSE * | | h := F( h, d[dd - 1], ll + bb, TRUE ) * | END IF. * | * | RETURN first "nn" bytes from little-endian word array h[]. * | * END FUNCTION. * * @param dest destination of hashing digest * @param d message blocks * @param dd length of d * @param ll 128-bit length of message * @param kk length of secret key * @param nn length of hash digest * * @returns 0 upon successful hash */ static int BLAKE2B(uint8_t *dest, block_t *d, size_t dd, u128 ll, uint8_t kk, uint8_t nn) { uint8_t bytes[8]; uint64_t i, j; uint64_t h[8]; u128 t = U128_ZERO; /* h[0..7] = IV[0..7] */ for (i = 0; i < 8; i++) { h[i] = blake2b_iv[i]; } h[0] ^= 0x01010000 ^ (kk << 8) ^ nn; if (dd > 1) { for (i = 0; i < dd - 1; i++) { u128_increment(t, bb); F(h, d[i], t, 0); } } if (kk != 0) { u128_increment(ll, bb); } F(h, d[dd - 1], ll, 1); /* copy bytes from h to destination buffer */ for (i = 0; i < nn; i++) { if (i % sizeof(uint64_t) == 0) { /* copy values from uint64 to 8 u8's */ for (j = 0; j < sizeof(uint64_t); j++) { uint16_t offset = 8 * j; uint64_t mask = 0xFF; mask <<= offset; bytes[j] = (h[i / 8] & (mask)) >> offset; } } dest[i] = bytes[i % 8]; } return 0; } /** * @brief blake2b hash function * * This is the front-end function that sets up the argument for BLAKE2B(). * * @param message the message to be hashed * @param len length of message (0 <= len < 2**128) (depends on sizeof(size_t) * for this implementation) * @param key optional secret key * @param kk length of optional secret key (0 <= kk <= 64) * @param nn length of output digest (1 <= nn < 64) * * @returns NULL if heap memory couldn't be allocated. Otherwise heap allocated * memory nn bytes large */ uint8_t *blake2b(const uint8_t *message, size_t len, const uint8_t *key, uint8_t kk, uint8_t nn) { uint8_t *dest = NULL; uint64_t long_hold; size_t dd, has_key, i; size_t block_index, word_in_block; u128 ll; block_t *blocks; if (message == NULL) { len = 0; } if (key == NULL) { kk = 0; } kk = MIN(kk, KK_MAX); nn = MIN(nn, NN_MAX); dd = MAX(CEIL(kk, bb) + CEIL(len, bb), 1); blocks = calloc(dd, sizeof(block_t)); if (blocks == NULL) { return NULL; } dest = malloc(nn * sizeof(uint8_t)); if (dest == NULL) { free(blocks); return NULL; } /* If there is a secret key it occupies the first block */ for (i = 0; i < kk; i++) { long_hold = key[i]; long_hold <<= 8 * (i % 8); word_in_block = (i % bb) / 8; /* block_index will always be 0 because kk <= 64 and bb = 128*/ blocks[0][word_in_block] |= long_hold; } has_key = kk > 0 ? 1 : 0; for (i = 0; i < len; i++) { /* long_hold exists because the bit-shifting will overflow if we don't * store the value */ long_hold = message[i]; long_hold <<= 8 * (i % 8); block_index = has_key + (i / bb); word_in_block = (i % bb) / 8; blocks[block_index][word_in_block] |= long_hold; } u128_fill(ll, len); BLAKE2B(dest, blocks, dd, ll, kk, nn); free(blocks); return dest; } /** @} */ /** * @brief Self-test implementations * @returns void */ static void assert_bytes(const uint8_t *expected, const uint8_t *actual, uint8_t len) { uint8_t i; assert(expected != NULL); assert(actual != NULL); assert(len > 0); for (i = 0; i < len; i++) { assert(expected[i] == actual[i]); } } /** * @brief testing function * * @returns void */ static void test() { uint8_t *digest = NULL; /* "abc" example straight out of RFC-7693 */ uint8_t abc[3] = {'a', 'b', 'c'}; uint8_t abc_answer[64] = { 0xBA, 0x80, 0xA5, 0x3F, 0x98, 0x1C, 0x4D, 0x0D, 0x6A, 0x27, 0x97, 0xB6, 0x9F, 0x12, 0xF6, 0xE9, 0x4C, 0x21, 0x2F, 0x14, 0x68, 0x5A, 0xC4, 0xB7, 0x4B, 0x12, 0xBB, 0x6F, 0xDB, 0xFF, 0xA2, 0xD1, 0x7D, 0x87, 0xC5, 0x39, 0x2A, 0xAB, 0x79, 0x2D, 0xC2, 0x52, 0xD5, 0xDE, 0x45, 0x33, 0xCC, 0x95, 0x18, 0xD3, 0x8A, 0xA8, 0xDB, 0xF1, 0x92, 0x5A, 0xB9, 0x23, 0x86, 0xED, 0xD4, 0x00, 0x99, 0x23}; digest = blake2b(abc, 3, NULL, 0, 64); assert_bytes(abc_answer, digest, 64); free(digest); uint8_t key[64] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f}; uint8_t key_answer[64] = { 0x10, 0xeb, 0xb6, 0x77, 0x00, 0xb1, 0x86, 0x8e, 0xfb, 0x44, 0x17, 0x98, 0x7a, 0xcf, 0x46, 0x90, 0xae, 0x9d, 0x97, 0x2f, 0xb7, 0xa5, 0x90, 0xc2, 0xf0, 0x28, 0x71, 0x79, 0x9a, 0xaa, 0x47, 0x86, 0xb5, 0xe9, 0x96, 0xe8, 0xf0, 0xf4, 0xeb, 0x98, 0x1f, 0xc2, 0x14, 0xb0, 0x05, 0xf4, 0x2d, 0x2f, 0xf4, 0x23, 0x34, 0x99, 0x39, 0x16, 0x53, 0xdf, 0x7a, 0xef, 0xcb, 0xc1, 0x3f, 0xc5, 0x15, 0x68}; digest = blake2b(NULL, 0, key, 64, 64); assert_bytes(key_answer, digest, 64); free(digest); uint8_t zero[1] = {0}; uint8_t zero_key[64] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f}; uint8_t zero_answer[64] = { 0x96, 0x1f, 0x6d, 0xd1, 0xe4, 0xdd, 0x30, 0xf6, 0x39, 0x01, 0x69, 0x0c, 0x51, 0x2e, 0x78, 0xe4, 0xb4, 0x5e, 0x47, 0x42, 0xed, 0x19, 0x7c, 0x3c, 0x5e, 0x45, 0xc5, 0x49, 0xfd, 0x25, 0xf2, 0xe4, 0x18, 0x7b, 0x0b, 0xc9, 0xfe, 0x30, 0x49, 0x2b, 0x16, 0xb0, 0xd0, 0xbc, 0x4e, 0xf9, 0xb0, 0xf3, 0x4c, 0x70, 0x03, 0xfa, 0xc0, 0x9a, 0x5e, 0xf1, 0x53, 0x2e, 0x69, 0x43, 0x02, 0x34, 0xce, 0xbd}; digest = blake2b(zero, 1, zero_key, 64, 64); assert_bytes(zero_answer, digest, 64); free(digest); uint8_t filled[64] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f}; uint8_t filled_key[64] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f}; uint8_t filled_answer[64] = { 0x65, 0x67, 0x6d, 0x80, 0x06, 0x17, 0x97, 0x2f, 0xbd, 0x87, 0xe4, 0xb9, 0x51, 0x4e, 0x1c, 0x67, 0x40, 0x2b, 0x7a, 0x33, 0x10, 0x96, 0xd3, 0xbf, 0xac, 0x22, 0xf1, 0xab, 0xb9, 0x53, 0x74, 0xab, 0xc9, 0x42, 0xf1, 0x6e, 0x9a, 0xb0, 0xea, 0xd3, 0x3b, 0x87, 0xc9, 0x19, 0x68, 0xa6, 0xe5, 0x09, 0xe1, 0x19, 0xff, 0x07, 0x78, 0x7b, 0x3e, 0xf4, 0x83, 0xe1, 0xdc, 0xdc, 0xcf, 0x6e, 0x30, 0x22}; digest = blake2b(filled, 64, filled_key, 64, 64); assert_bytes(filled_answer, digest, 64); free(digest); printf("All tests have successfully passed!\n"); } /** * @brief main function * * @returns 0 on successful program exit */ int main() { test(); return 0; }