/** * @file * @brief [Shunting Yard Algorithm](https://en.wikipedia.org/wiki/Shunting_yard_algorithm) * @details From Wikipedia: In computer science, * the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation. * It can produce either a postfix notation string, also known as Reverse Polish notation (RPN), or an abstract syntax tree (AST). * The algorithm was invented by Edsger Dijkstra and named the "shunting yard" algorithm because its operation resembles that of a railroad shunting yard. * @author [CascadingCascade](https://github.com/CascadingCascade) */ #include /// for assertion #include /// for IO operations #include /// for memory management #include /// for string operations #include /// for isdigit() /** * @brief Helper function that returns each operator's precedence * @param operator the operator to be queried * @returns the operator's precedence */ int getPrecedence(char operator) { switch (operator) { case '+': case '-': { return 1; } case '*': case '/': { return 2; } case '^': { return 3; } default:{ fprintf(stderr,"Error: Invalid operator\n"); return -1; } } } /** * @brief Helper function that returns each operator's associativity * @param operator the operator to be queried * @returns '1' if the operator is left associative * @returns '0' if the operator is right associative */ int getAssociativity(char operator) { switch (operator) { case '^': { return 0; } case '+': case '-': case '*': case '/': { return 1; } default: { fprintf(stderr,"Error: Invalid operator\n"); return -1; } } } /** * @brief An implementation of the shunting yard that converts infix notation to reversed polish notation * @param input pointer to input string * @param output pointer to output location * @returns `1` if a parentheses mismatch is detected * @returns `0` if no mismatches are detected */ int shuntingYard(const char *input, char *output) { const unsigned int inputLength = strlen(input); char* operatorStack = (char*) malloc(sizeof(char) * inputLength); // This pointer points at where we should insert the next element, // Hence stackPointer - 1 is used when accessing elements unsigned int stackPointer = 0; // We will parse the input with strtok(), // Since strtok() is destructive, we make a copy of the input to preserve the original string char* str = malloc(sizeof(char) * inputLength + 1); strcpy(str,input); char* token = strtok(str," "); // We will push to output with strcat() and strncat(), // This initializes output to be a string with a length of zero output[0] = '\0'; while (token != NULL) { // If it's a number, push it to the output directly if (isdigit(token[0])) { strcat(output,token); strcat(output," "); token = strtok(NULL," "); continue; } switch (token[0]) { // If it's a left parenthesis, push it to the operator stack for later matching case '(': { operatorStack[stackPointer++] = token[0]; break; } // If it's a right parenthesis, search for a left parenthesis to match it case ')': { // Guard statement against accessing an empty stack if(stackPointer < 1) { fprintf(stderr,"Error: Mismatched parentheses\n"); free(operatorStack); free(str); return 1; } while (operatorStack[stackPointer - 1] != '(') { // strncat() with a count of 1 is used to append characters to output const unsigned int i = (stackPointer--) - 1; strncat(output, &operatorStack[i], 1); strcat(output," "); // If the operator stack is exhausted before a match can be found, // There must be a mismatch if(stackPointer == 0) { fprintf(stderr,"Error: Mismatched parentheses\n"); free(operatorStack); free(str); return 1; } } // Discards the parentheses now the matching is complete, // Simply remove the left parenthesis from the stack is enough, // Since the right parenthesis didn't enter the stack in the first place stackPointer--; break; } // If it's an operator(o1), we compare it to whatever is at the top of the operator stack(o2) default: { // Places the operator into the stack directly if it's empty if(stackPointer < 1) { operatorStack[stackPointer++] = token[0]; break; } // We need to check if there's actually a valid operator at the top of the stack if((stackPointer - 1 > 0) && operatorStack[stackPointer - 1] != '(') { const int precedence1 = getPrecedence(token[0]); const int precedence2 = getPrecedence(operatorStack[stackPointer - 1]); const int associativity = getAssociativity(token[0]); // We pop operators from the stack, if... while ( // ... their precedences are equal, and o1 is left associative, ... ((associativity && precedence1 == precedence2) || // ... or o2 simply have a higher precedence, ... precedence2 > precedence1) && // ... and there are still operators available to be popped. ((stackPointer - 1 > 0) && operatorStack[stackPointer - 1] != '(')) { strncat(output,&operatorStack[(stackPointer--) - 1],1); strcat(output," "); } } // We'll save o1 for later operatorStack[stackPointer++] = token[0]; break; } } token = strtok(NULL," "); } free(str); // Now all input has been exhausted, // Pop everything from the operator stack, then push them to the output while (stackPointer > 0) { // If there are still leftover left parentheses in the stack, // There must be a mismatch if(operatorStack[stackPointer - 1] == '(') { fprintf(stderr,"Error: Mismatched parentheses\n"); free(operatorStack); return 1; } const unsigned int i = (stackPointer--) - 1; strncat(output, &operatorStack[i], 1); if (i != 0) { strcat(output," "); } } free(operatorStack); return 0; } /** * @brief Self-test implementations * @returns void */ static void test() { char* in = malloc(sizeof(char) * 50); char* out = malloc(sizeof(char) * 50); int i; strcpy(in,"3 + 4 * ( 2 - 1 )"); printf("Infix: %s\n",in); i = shuntingYard(in, out); printf("RPN: %s\n",out); printf("Return code: %d\n\n",i); assert(strcmp(out,"3 4 2 1 - * +") == 0); assert(i == 0); strcpy(in,"3 + 4 * 2 / ( 1 - 5 ) ^ 2 ^ 3"); printf("Infix: %s\n",in); i = shuntingYard(in, out); printf("RPN: %s\n",out); printf("Return code: %d\n\n",i); assert(strcmp(out,"3 4 2 * 1 5 - 2 3 ^ ^ / +") == 0); assert(i == 0); printf("Testing successfully completed!\n"); free(in); free(out); } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // Run self-test implementations return 0; }