Algorithms_in_C  1.0.0
Set of algorithms implemented in C.
ode_midpoint_euler.c File Reference

Solve a multivariable first order ordinary differential equation (ODEs) using midpoint Euler method More...

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
Include dependency graph for ode_midpoint_euler.c:

Macros

#define order   2
 number of dependent variables in problem
 

Functions

void problem (const double *x, double *y, double *dy)
 Problem statement for a system with first-order differential equations. More...
 
void exact_solution (const double *x, double *y)
 Exact solution of the problem. More...
 
void midpoint_euler_step (double dx, double *x, double *y, double *dy)
 Compute next step approximation using the midpoint-Euler method. More...
 
double midpoint_euler (double dx, double x0, double x_max, double *y, char save_to_file)
 Compute approximation using the midpoint-Euler method in the given limits. More...
 
int main (int argc, char *argv[])
 Main Function.
 

Detailed Description

Solve a multivariable first order ordinary differential equation (ODEs) using midpoint Euler method

Authors
Krishna Vedala

The ODE being solved is:

\begin{eqnarray*} \dot{u} &=& v\\ \dot{v} &=& -\omega^2 u\\ \omega &=& 1\\ [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)} \end{eqnarray*}

The exact solution for the above problem is:

\begin{eqnarray*} u(x) &=& \cos(x)\\ v(x) &=& -\sin(x)\\ \end{eqnarray*}

The computation results are stored to a text file midpoint_euler.csv and the exact soltuion results in exact.csv for comparison. Implementation solution

To implement Van der Pol oscillator, change the problem function to:

const double mu = 2.0;
dy[0] = y[1];
dy[1] = mu * (1.f - y[0] * y[0]) * y[1] - y[0];
See also
ode_forward_euler.c, ode_semi_implicit_euler.c

Function Documentation

◆ exact_solution()

void exact_solution ( const double *  x,
double *  y 
)

Exact solution of the problem.

Used for solution comparison.

Parameters
[in]xindependent variable
[in,out]ydependent variable
68 {
69  y[0] = cos(x[0]);
70  y[1] = -sin(x[0]);
71 }

◆ midpoint_euler()

double midpoint_euler ( double  dx,
double  x0,
double  x_max,
double *  y,
char  save_to_file 
)

Compute approximation using the midpoint-Euler method in the given limits.

Parameters
[in]dxstep size
[in]x0initial value of independent variable
[in]x_maxfinal value of independent variable
[in,out]ytake \(y_n\) and compute \(y_{n+1}\)
[in]save_to_fileflag to save results to a CSV file (1) or not (0)
Returns
time taken for computation in seconds
108 {
109  double dy[order];
110 
111  FILE *fp = NULL;
112  if (save_to_file)
113  {
114  fp = fopen("midpoint_euler.csv", "w+");
115  if (fp == NULL)
116  {
117  perror("Error! ");
118  return -1;
119  }
120  }
121 
122  /* start integration */
123  clock_t t1 = clock();
124  double x = x0;
125  do // iterate for each step of independent variable
126  {
127  if (save_to_file && fp)
128  fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file
129  midpoint_euler_step(dx, &x, y, dy); // perform integration
130  x += dx; // update step
131  } while (x <= x_max); // till upper limit of independent variable
132  /* end of integration */
133  clock_t t2 = clock();
134 
135  if (save_to_file && fp)
136  fclose(fp);
137 
138  return (double)(t2 - t1) / CLOCKS_PER_SEC;
139 }
Here is the call graph for this function:

◆ midpoint_euler_step()

void midpoint_euler_step ( double  dx,
double *  x,
double *  y,
double *  dy 
)

Compute next step approximation using the midpoint-Euler method.

\[y_{n+1} = y_n + dx\, f\left(x_n+\frac{1}{2}dx, y_n + \frac{1}{2}dx\,f\left(x_n,y_n\right)\right)\]

Parameters
[in]dxstep size
[in,out]xtake \(x_n\) and compute \(x_{n+1}\)
[in,out]ytake \(y_n\) and compute \(y_{n+1}\)
[in,out]dycompute \(y_n+\frac{1}{2}dx\,f\left(x_n,y_n\right)\)
84 {
85  problem(x, y, dy);
86  double tmp_x = (*x) + 0.5 * dx;
87  double tmp_y[order];
88  int o;
89  for (o = 0; o < order; o++) tmp_y[o] = y[o] + 0.5 * dx * dy[o];
90 
91  problem(&tmp_x, tmp_y, dy);
92 
93  for (o = 0; o < order; o++) y[o] += dx * dy[o];
94 }
Here is the call graph for this function:

◆ problem()

void problem ( const double *  x,
double *  y,
double *  dy 
)

Problem statement for a system with first-order differential equations.

Updates the system differential variables.

Note
This function can be updated to and ode of any order.
Parameters
[in]xindependent variable(s)
[in,out]ydependent variable(s)
[in,out]dyfirst-derivative of dependent variable(s)
55 {
56  const double omega = 1.F; // some const for the problem
57  dy[0] = y[1]; // x dot
58  dy[1] = -omega * omega * y[0]; // y dot
59 }
midpoint_euler_step
void midpoint_euler_step(double dx, double *x, double *y, double *dy)
Compute next step approximation using the midpoint-Euler method.
Definition: ode_midpoint_euler.c:83
order
#define order
number of dependent variables in problem
Definition: ode_midpoint_euler.c:43
problem
void problem(const double *x, double *y, double *dy)
Problem statement for a system with first-order differential equations.
Definition: ode_midpoint_euler.c:54