/** * @file * \brief Library functions to compute [QR * decomposition](https://en.wikipedia.org/wiki/QR_decomposition) of a given * matrix. * \author [Krishna Vedala](https://github.com/kvedala) */ #ifndef QR_DECOMPOSE_H #define QR_DECOMPOSE_H #include #include #include #ifdef _OPENMP #include #endif /** * function to display matrix on stdout */ void print_matrix(double **A, /**< matrix to print */ int M, /**< number of rows of matrix */ int N) /**< number of columns of matrix */ { for (int row = 0; row < M; row++) { for (int col = 0; col < N; col++) printf("% 9.3g\t", A[row][col]); putchar('\n'); } putchar('\n'); } /** * Compute dot product of two vectors of equal lengths * * If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ and * \f$\vec{b}=\left[b_0,b_1,b_1,...,b_L\right]\f$ then * \f$\vec{a}\cdot\vec{b}=\displaystyle\sum_{i=0}^L a_i\times b_i\f$ * * \returns \f$\vec{a}\cdot\vec{b}\f$ */ double vector_dot(double *a, double *b, int L) { double mag = 0.f; int i; #ifdef _OPENMP // parallelize on threads #pragma omp parallel for reduction(+ : mag) #endif for (i = 0; i < L; i++) mag += a[i] * b[i]; return mag; } /** * Compute magnitude of vector. * * If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ then * \f$\left|\vec{a}\right|=\sqrt{\displaystyle\sum_{i=0}^L a_i^2}\f$ * * \returns \f$\left|\vec{a}\right|\f$ */ double vector_mag(double *vector, int L) { double dot = vector_dot(vector, vector, L); return sqrt(dot); } /** * Compute projection of vector \f$\vec{a}\f$ on \f$\vec{b}\f$ defined as * \f[\text{proj}_\vec{b}\vec{a}=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^2}\vec{b}\f] * * \returns NULL if error, otherwise pointer to output */ double *vector_proj(double *a, double *b, double *out, int L) { const double num = vector_dot(a, b, L); const double deno = vector_dot(b, b, L); if (deno == 0) /*! check for division by zero */ return NULL; const double scalar = num / deno; int i; #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (i = 0; i < L; i++) out[i] = scalar * b[i]; return out; } /** * Compute vector subtraction * * \f$\vec{c}=\vec{a}-\vec{b}\f$ * * \returns pointer to output vector */ double *vector_sub(double *a, /**< minuend */ double *b, /**< subtrahend */ double *out, /**< resultant vector */ int L /**< length of vectors */ ) { int i; #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (i = 0; i < L; i++) out[i] = a[i] - b[i]; return out; } /** * Decompose matrix \f$A\f$ using [Gram-Schmidt *process](https://en.wikipedia.org/wiki/QR_decomposition). * * \f{eqnarray*}{ * \text{given that}\quad A &=& *\left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{N-1},\right]\\ * \text{where}\quad\mathbf{a}_i &=& *\left[a_{0i},a_{1i},a_{2i},\ldots,a_{(M-1)i}\right]^T\quad\ldots\mbox{(column *vectors)}\\ * \text{then}\quad\mathbf{u}_i &=& \mathbf{a}_i *-\sum_{j=0}^{i-1}\text{proj}_{\mathbf{u}_j}\mathbf{a}_i\\ * \mathbf{e}_i &=&\frac{\mathbf{u}_i}{\left|\mathbf{u}_i\right|}\\ * Q &=& \begin{bmatrix}\mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 & \dots & *\mathbf{e}_{N-1}\end{bmatrix}\\ * R &=& \begin{bmatrix}\langle\mathbf{e}_0\,,\mathbf{a}_0\rangle & *\langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & *\langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots \\ * 0 & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & *\langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\ * 0 & 0 & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\ * \vdots & \vdots & \vdots & \ddots * \end{bmatrix}\\ * \f} */ void qr_decompose(double **A, /**< input matrix to decompose */ double **Q, /**< output decomposed matrix */ double **R, /**< output decomposed matrix */ int M, /**< number of rows of matrix A */ int N /**< number of columns of matrix A */ ) { double *col_vector = (double *)malloc(M * sizeof(double)); double *col_vector2 = (double *)malloc(M * sizeof(double)); double *tmp_vector = (double *)malloc(M * sizeof(double)); for (int i = 0; i < N; i++) /* for each column => R is a square matrix of NxN */ { int j; #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (j = 0; j < i; j++) /* second dimension of column */ R[i][j] = 0.; /* make R upper triangular */ /* get corresponding Q vector */ #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (j = 0; j < M; j++) { tmp_vector[j] = A[j][i]; /* accumulator for uk */ col_vector[j] = A[j][i]; } for (j = 0; j < i; j++) { for (int k = 0; k < M; k++) col_vector2[k] = Q[k][j]; vector_proj(col_vector, col_vector2, col_vector2, M); vector_sub(tmp_vector, col_vector2, tmp_vector, M); } double mag = vector_mag(tmp_vector, M); #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (j = 0; j < M; j++) Q[j][i] = tmp_vector[j] / mag; /* compute upper triangular values of R */ for (int kk = 0; kk < M; kk++) col_vector[kk] = Q[kk][i]; for (int k = i; k < N; k++) { for (int kk = 0; kk < M; kk++) col_vector2[kk] = A[kk][k]; R[i][k] = vector_dot(col_vector, col_vector2, M); } } free(col_vector); free(col_vector2); free(tmp_vector); } #endif // QR_DECOMPOSE_H