/** * \file * \brief [Adaptive Linear Neuron * (ADALINE)](https://en.wikipedia.org/wiki/ADALINE) implementation * \details * * [source](https://commons.wikimedia.org/wiki/File:Adaline_flow_chart.gif) * ADALINE is one of the first and simplest single layer artificial neural * network. The algorithm essentially implements a linear function * \f[ f\left(x_0,x_1,x_2,\ldots\right) = * \sum_j x_jw_j+\theta * \f] * where \f$x_j\f$ are the input features of a sample, \f$w_j\f$ are the * coefficients of the linear function and \f$\theta\f$ is a constant. If we * know the \f$w_j\f$, then for any given set of features, \f$y\f$ can be * computed. Computing the \f$w_j\f$ is a supervised learning algorithm wherein * a set of features and their corresponding outputs are given and weights are * computed using stochastic gradient descent method. * \author [Krishna Vedala](https://github.com/kvedala) */ #include #include #include #include #include #include #include /** * @addtogroup machine_learning Machine learning algorithms * @{ * @addtogroup adaline Adaline learning algorithm * @{ */ /** Maximum number of iterations to learn */ #define MAX_ADALINE_ITER 500 // INT_MAX /** structure to hold adaline model parameters */ struct adaline { double eta; /**< learning rate of the algorithm */ double *weights; /**< weights of the neural network */ int num_weights; /**< number of weights of the neural network */ }; /** convergence accuracy \f$=1\times10^{-5}\f$ */ #define ADALINE_ACCURACY 1e-5 /** * Default constructor * \param[in] num_features number of features present * \param[in] eta learning rate (optional, default=0.1) * \returns new adaline model */ struct adaline new_adaline(const int num_features, const double eta) { if (eta <= 0.f || eta >= 1.f) { fprintf(stderr, "learning rate should be > 0 and < 1\n"); exit(EXIT_FAILURE); } // additional weight is for the constant bias term int num_weights = num_features + 1; struct adaline ada; ada.eta = eta; ada.num_weights = num_weights; ada.weights = (double *)malloc(num_weights * sizeof(double)); if (!ada.weights) { perror("Unable to allocate error for weights!"); return ada; } // initialize with random weights in the range [-50, 49] for (int i = 0; i < num_weights; i++) ada.weights[i] = 1.f; // ada.weights[i] = (double)(rand() % 100) - 50); return ada; } /** delete dynamically allocated memory * \param[in] ada model from which the memory is to be freed. */ void delete_adaline(struct adaline *ada) { if (ada == NULL) return; free(ada->weights); }; /** [Heaviside activation * function](https://en.wikipedia.org/wiki/Heaviside_step_function) * @param x activation function input * @returns \f$f(x)= \begin{cases}1 & \forall\; x > 0\\ -1 & \forall\; x \le0 * \end{cases}\f$ */ int adaline_activation(double x) { return x > 0 ? 1 : -1; } /** * Operator to print the weights of the model * @param ada model for which the values to print * @returns pointer to a NULL terminated string of formatted weights */ char *adaline_get_weights_str(const struct adaline *ada) { static char out[100]; // static so the value is persistent sprintf(out, "<"); for (int i = 0; i < ada->num_weights; i++) { sprintf(out, "%s%.4g", out, ada->weights[i]); if (i < ada->num_weights - 1) sprintf(out, "%s, ", out); } sprintf(out, "%s>", out); return out; } /** * predict the output of the model for given set of features * * \param[in] ada adaline model to predict * \param[in] x input vector * \param[out] out optional argument to return neuron output before applying * activation function (`NULL` to ignore) * \returns model prediction output */ int adaline_predict(struct adaline *ada, const double *x, double *out) { double y = ada->weights[ada->num_weights - 1]; // assign bias value for (int i = 0; i < ada->num_weights - 1; i++) y += x[i] * ada->weights[i]; if (out) // if out variable is not NULL *out = y; // quantizer: apply ADALINE threshold function return adaline_activation(y); } /** * Update the weights of the model using supervised learning for one feature * vector * * \param[in] ada adaline model to fit * \param[in] x feature vector * \param[in] y known output value * \returns correction factor */ double adaline_fit_sample(struct adaline *ada, const double *x, const int y) { /* output of the model with current weights */ int p = adaline_predict(ada, x, NULL); int prediction_error = y - p; // error in estimation double correction_factor = ada->eta * prediction_error; /* update each weight, the last weight is the bias term */ for (int i = 0; i < ada->num_weights - 1; i++) { ada->weights[i] += correction_factor * x[i]; } ada->weights[ada->num_weights - 1] += correction_factor; // update bias return correction_factor; } /** * Update the weights of the model using supervised learning for an array of * vectors. * * \param[in] ada adaline model to train * \param[in] X array of feature vector * \param[in] y known output value for each feature vector * \param[in] N number of training samples */ void adaline_fit(struct adaline *ada, double **X, const int *y, const int N) { double avg_pred_error = 1.f; int iter; for (iter = 0; (iter < MAX_ADALINE_ITER) && (avg_pred_error > ADALINE_ACCURACY); iter++) { avg_pred_error = 0.f; // perform fit for each sample for (int i = 0; i < N; i++) { double err = adaline_fit_sample(ada, X[i], y[i]); avg_pred_error += fabs(err); } avg_pred_error /= N; // Print updates every 200th iteration // if (iter % 100 == 0) printf("\tIter %3d: Training weights: %s\tAvg error: %.4f\n", iter, adaline_get_weights_str(ada), avg_pred_error); } if (iter < MAX_ADALINE_ITER) printf("Converged after %d iterations.\n", iter); else printf("Did not converged after %d iterations.\n", iter); } /** @} * @} */ /** * test function to predict points in a 2D coordinate system above the line * \f$x=y\f$ as +1 and others as -1. * Note that each point is defined by 2 values or 2 features. * \param[in] eta learning rate (optional, default=0.01) */ void test1(double eta) { struct adaline ada = new_adaline(2, eta); // 2 features const int N = 10; // number of sample points const double saved_X[10][2] = {{0, 1}, {1, -2}, {2, 3}, {3, -1}, {4, 1}, {6, -5}, {-7, -3}, {-8, 5}, {-9, 2}, {-10, -15}}; double **X = (double **)malloc(N * sizeof(double *)); const int Y[10] = {1, -1, 1, -1, -1, -1, 1, 1, 1, -1}; // corresponding y-values for (int i = 0; i < N; i++) { X[i] = (double *)saved_X[i]; } printf("------- Test 1 -------\n"); printf("Model before fit: %s\n", adaline_get_weights_str(&ada)); adaline_fit(&ada, X, Y, N); printf("Model after fit: %s\n", adaline_get_weights_str(&ada)); double test_x[] = {5, -3}; int pred = adaline_predict(&ada, test_x, NULL); printf("Predict for x=(5,-3): % d\n", pred); assert(pred == -1); printf(" ...passed\n"); double test_x2[] = {5, 8}; pred = adaline_predict(&ada, test_x2, NULL); printf("Predict for x=(5, 8): % d\n", pred); assert(pred == 1); printf(" ...passed\n"); // for (int i = 0; i < N; i++) // free(X[i]); free(X); delete_adaline(&ada); } /** * test function to predict points in a 2D coordinate system above the line * \f$x+3y=-1\f$ as +1 and others as -1. * Note that each point is defined by 2 values or 2 features. * The function will create random sample points for training and test purposes. * \param[in] eta learning rate (optional, default=0.01) */ void test2(double eta) { struct adaline ada = new_adaline(2, eta); // 2 features const int N = 50; // number of sample points double **X = (double **)malloc(N * sizeof(double *)); int *Y = (int *)malloc(N * sizeof(int)); // corresponding y-values for (int i = 0; i < N; i++) X[i] = (double *)malloc(2 * sizeof(double)); // generate sample points in the interval // [-range2/100 , (range2-1)/100] int range = 500; // sample points full-range int range2 = range >> 1; // sample points half-range for (int i = 0; i < N; i++) { double x0 = ((rand() % range) - range2) / 100.f; double x1 = ((rand() % range) - range2) / 100.f; X[i][0] = x0; X[i][1] = x1; Y[i] = (x0 + 3. * x1) > -1 ? 1 : -1; } printf("------- Test 2 -------\n"); printf("Model before fit: %s\n", adaline_get_weights_str(&ada)); adaline_fit(&ada, X, Y, N); printf("Model after fit: %s\n", adaline_get_weights_str(&ada)); int N_test_cases = 5; double test_x[2]; for (int i = 0; i < N_test_cases; i++) { double x0 = ((rand() % range) - range2) / 100.f; double x1 = ((rand() % range) - range2) / 100.f; test_x[0] = x0; test_x[1] = x1; int pred = adaline_predict(&ada, test_x, NULL); printf("Predict for x=(% 3.2f,% 3.2f): % d\n", x0, x1, pred); int expected_val = (x0 + 3. * x1) > -1 ? 1 : -1; assert(pred == expected_val); printf(" ...passed\n"); } for (int i = 0; i < N; i++) free(X[i]); free(X); free(Y); delete_adaline(&ada); } /** * test function to predict points in a 3D coordinate system lying within the * sphere of radius 1 and centre at origin as +1 and others as -1. Note that * each point is defined by 3 values but we use 6 features. The function will * create random sample points for training and test purposes. * The sphere centred at origin and radius 1 is defined as: * \f$x^2+y^2+z^2=r^2=1\f$ and if the \f$r^2<1\f$, point lies within the sphere * else, outside. * * \param[in] eta learning rate (optional, default=0.01) */ void test3(double eta) { struct adaline ada = new_adaline(6, eta); // 2 features const int N = 50; // number of sample points double **X = (double **)malloc(N * sizeof(double *)); int *Y = (int *)malloc(N * sizeof(int)); // corresponding y-values for (int i = 0; i < N; i++) X[i] = (double *)malloc(6 * sizeof(double)); // generate sample points in the interval // [-range2/100 , (range2-1)/100] int range = 200; // sample points full-range int range2 = range >> 1; // sample points half-range for (int i = 0; i < N; i++) { double x0 = ((rand() % range) - range2) / 100.f; double x1 = ((rand() % range) - range2) / 100.f; double x2 = ((rand() % range) - range2) / 100.f; X[i][0] = x0; X[i][1] = x1; X[i][2] = x2; X[i][3] = x0 * x0; X[i][4] = x1 * x1; X[i][5] = x2 * x2; Y[i] = (x0 * x0 + x1 * x1 + x2 * x2) <= 1 ? 1 : -1; } printf("------- Test 3 -------\n"); printf("Model before fit: %s\n", adaline_get_weights_str(&ada)); adaline_fit(&ada, X, Y, N); printf("Model after fit: %s\n", adaline_get_weights_str(&ada)); int N_test_cases = 5; double test_x[6]; for (int i = 0; i < N_test_cases; i++) { double x0 = ((rand() % range) - range2) / 100.f; double x1 = ((rand() % range) - range2) / 100.f; double x2 = ((rand() % range) - range2) / 100.f; test_x[0] = x0; test_x[1] = x1; test_x[2] = x2; test_x[3] = x0 * x0; test_x[4] = x1 * x1; test_x[5] = x2 * x2; int pred = adaline_predict(&ada, test_x, NULL); printf("Predict for x=(% 3.2f,% 3.2f): % d\n", x0, x1, pred); int expected_val = (x0 * x0 + x1 * x1 + x2 * x2) <= 1 ? 1 : -1; assert(pred == expected_val); printf(" ...passed\n"); } for (int i = 0; i < N; i++) free(X[i]); free(X); free(Y); delete_adaline(&ada); } /** Main function */ int main(int argc, char **argv) { srand(time(NULL)); // initialize random number generator double eta = 0.1; // default value of eta if (argc == 2) // read eta value from commandline argument if present eta = strtof(argv[1], NULL); test1(eta); printf("Press ENTER to continue...\n"); getchar(); test2(eta); printf("Press ENTER to continue...\n"); getchar(); test3(eta); return 0; }