/** * @file * \brief Compute real eigen values and eigen vectors of a symmetric matrix * using [QR decomposition](https://en.wikipedia.org/wiki/QR_decomposition) * method. * \author [Krishna Vedala](https://github.com/kvedala) */ #include "qr_decompose.h" #include #include #include #include #include #ifdef _OPENMP #include #endif #define LIMS 9 /**< limit of range of matrix values */ #define EPSILON 1e-10 /**< accuracy tolerance limit */ /** * create a square matrix of given size with random elements * \param[out] A matrix to create (must be pre-allocated in memory) * \param[in] N matrix size */ void create_matrix(double **A, int N) { int i, j, tmp, lim2 = LIMS >> 1; #ifdef _OPENMP #pragma omp for #endif for (i = 0; i < N; i++) { A[i][i] = (rand() % LIMS) - lim2; for (j = i + 1; j < N; j++) { tmp = (rand() % LIMS) - lim2; A[i][j] = tmp; A[j][i] = tmp; } } } /** * Perform multiplication of two matrices. * * R2 must be equal to C1 * * Resultant matrix size should be R1xC2 * \param[in] A first matrix to multiply * \param[in] B second matrix to multiply * \param[out] OUT output matrix (must be pre-allocated) * \param[in] R1 number of rows of first matrix * \param[in] C1 number of columns of first matrix * \param[in] R2 number of rows of second matrix * \param[in] C2 number of columns of second matrix * \returns pointer to resultant matrix */ double **mat_mul(double **A, double **B, double **OUT, int R1, int C1, int R2, int C2) { if (C1 != R2) { perror("Matrix dimensions mismatch!"); return OUT; } int i; #ifdef _OPENMP #pragma omp for #endif for (i = 0; i < R1; i++) for (int j = 0; j < C2; j++) { OUT[i][j] = 0.f; for (int k = 0; k < C1; k++) OUT[i][j] += A[i][k] * B[k][j]; } return OUT; } /** Compute eigen values using iterative shifted QR decomposition algorithm as * follows: * 1. Use last diagonal element of A as eigen value approximation \f$c\f$ * 2. Shift diagonals of matrix \f$A' = A - cI\f$ * 3. Decompose matrix \f$A'=QR\f$ * 4. Compute next approximation \f$A'_1 = RQ \f$ * 5. Shift diagonals back \f$A_1 = A'_1 + cI\f$ * 6. Termination condition check: last element below diagonal is almost 0 * 1. If not 0, go back to step 1 with the new approximation \f$A_1\f$ * 2. If 0, continue to step 7 * 7. Save last known \f$c\f$ as the eigen value. * 8. Are all eigen values found? * 1. If not, remove last row and column of \f$A_1\f$ and go back to step 1. * 2. If yes, stop. * * \note The matrix \f$A\f$ gets modified * * \param[in,out] A matrix to compute eigen values for * \param[out] eig_vals resultant vector containing computed eigen values * \param[in] mat_size matrix size * \param[in] debug_print 1 to print intermediate Q & R matrices, 0 for not to * \returns time for computation in seconds */ double eigen_values(double **A, double *eigen_vals, int mat_size, char debug_print) { double **R = (double **)malloc(sizeof(double *) * mat_size); double **Q = (double **)malloc(sizeof(double *) * mat_size); if (!eigen_vals) { perror("Output eigen value vector cannot be NULL!"); return -1; } else if (!Q || !R) { perror("Unable to allocate memory for Q & R!"); return -1; } /* allocate dynamic memory for matrices */ for (int i = 0; i < mat_size; i++) { R[i] = (double *)malloc(sizeof(double) * mat_size); Q[i] = (double *)malloc(sizeof(double) * mat_size); if (!Q[i] || !R[i]) { perror("Unable to allocate memory for Q & R."); return -1; } } if (debug_print) print_matrix(A, mat_size, mat_size); int rows = mat_size, columns = mat_size; int counter = 0, num_eigs = rows - 1; double last_eig = 0; clock_t t1 = clock(); while (num_eigs > 0) /* continue till all eigen values are found */ { /* iterate with QR decomposition */ while (fabs(A[num_eigs][num_eigs - 1]) > EPSILON) { last_eig = A[num_eigs][num_eigs]; for (int i = 0; i < rows; i++) A[i][i] -= last_eig; /* A - cI */ qr_decompose(A, Q, R, rows, columns); if (debug_print) { print_matrix(A, rows, columns); print_matrix(Q, rows, columns); print_matrix(R, columns, columns); printf("-------------------- %d ---------------------\n", ++counter); } mat_mul(R, Q, A, columns, columns, rows, columns); for (int i = 0; i < rows; i++) A[i][i] += last_eig; /* A + cI */ } /* store the converged eigen value */ eigen_vals[num_eigs] = last_eig; if (debug_print) { printf("========================\n"); printf("Eigen value: % g,\n", last_eig); printf("========================\n"); } num_eigs--; rows--; columns--; } eigen_vals[0] = A[0][0]; double dtime = (double)(clock() - t1) / CLOCKS_PER_SEC; if (debug_print) { print_matrix(R, mat_size, mat_size); print_matrix(Q, mat_size, mat_size); } /* cleanup dynamic memory */ for (int i = 0; i < mat_size; i++) { free(R[i]); free(Q[i]); } free(R); free(Q); return dtime; } /** * test function to compute eigen values of a 2x2 matrix * \f[\begin{bmatrix} * 5 & 7\\ * 7 & 11 * \end{bmatrix}\f] * which are approximately, {15.56158, 0.384227} */ void test1() { int mat_size = 2; double X[][2] = {{5, 7}, {7, 11}}; double y[] = {15.56158, 0.384227}; // corresponding y-values double eig_vals[2]; // The following steps are to convert a "double[][]" to "double **" double **A = (double **)malloc(mat_size * sizeof(double *)); for (int i = 0; i < mat_size; i++) A[i] = X[i]; printf("------- Test 1 -------\n"); double dtime = eigen_values(A, eig_vals, mat_size, 0); for (int i = 0; i < mat_size; i++) { printf("%d/5 Checking for %.3g --> ", i + 1, y[i]); char result = 0; for (int j = 0; j < mat_size && !result; j++) { if (fabs(y[i] - eig_vals[j]) < 0.1) { result = 1; printf("(%.3g) ", eig_vals[j]); } } // ensure that i^th expected eigen value was computed assert(result != 0); printf("found\n"); } printf("Test 1 Passed in %.3g sec\n\n", dtime); free(A); } /** * test function to compute eigen values of a 2x2 matrix * \f[\begin{bmatrix} * -4& 4& 2& 0& -3\\ * 4& -4& 4& -3& -1\\ * 2& 4& 4& 3& -3\\ * 0& -3& 3& -1&-1\\ * -3& -1& -3& -3& 0 * \end{bmatrix}\f] * which are approximately, {9.27648, -9.26948, 2.0181, -1.03516, -5.98994} */ void test2() { int mat_size = 5; double X[][5] = {{-4, 4, 2, 0, -3}, {4, -4, 4, -3, -1}, {2, 4, 4, 3, -3}, {0, -3, 3, -1, -3}, {-3, -1, -3, -3, 0}}; double y[] = {9.27648, -9.26948, 2.0181, -1.03516, -5.98994}; // corresponding y-values double eig_vals[5]; // The following steps are to convert a "double[][]" to "double **" double **A = (double **)malloc(mat_size * sizeof(double *)); for (int i = 0; i < mat_size; i++) A[i] = X[i]; printf("------- Test 2 -------\n"); double dtime = eigen_values(A, eig_vals, mat_size, 0); for (int i = 0; i < mat_size; i++) { printf("%d/5 Checking for %.3g --> ", i + 1, y[i]); char result = 0; for (int j = 0; j < mat_size && !result; j++) { if (fabs(y[i] - eig_vals[j]) < 0.1) { result = 1; printf("(%.3g) ", eig_vals[j]); } } // ensure that i^th expected eigen value was computed assert(result != 0); printf("found\n"); } printf("Test 2 Passed in %.3g sec\n\n", dtime); free(A); } /** * main function */ int main(int argc, char **argv) { srand(time(NULL)); int mat_size = 5; if (argc == 2) mat_size = atoi(argv[1]); else { // if invalid input argument is given run tests test1(); test2(); printf("Usage: ./qr_eigen_values [mat_size]\n"); return 0; } if (mat_size < 2) { fprintf(stderr, "Matrix size should be > 2\n"); return -1; } int i, rows = mat_size, columns = mat_size; double **A = (double **)malloc(sizeof(double *) * mat_size); /* number of eigen values = matrix size */ double *eigen_vals = (double *)malloc(sizeof(double) * mat_size); if (!eigen_vals) { perror("Unable to allocate memory for eigen values!"); return -1; } for (i = 0; i < mat_size; i++) { A[i] = (double *)malloc(sizeof(double) * mat_size); } /* create a random matrix */ create_matrix(A, mat_size); print_matrix(A, mat_size, mat_size); double dtime = eigen_values(A, eigen_vals, mat_size, 0); printf("Eigen vals: "); for (i = 0; i < mat_size; i++) printf("% 9.4g\t", eigen_vals[i]); printf("\nTime taken to compute: % .4g sec\n", dtime); for (int i = 0; i < mat_size; i++) free(A[i]); free(A); free(eigen_vals); return 0; }