mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-22 05:21:49 +03:00
Create sublinear_search.c
This commit is contained in:
parent
e5dad3fa8d
commit
da4ad65749
115
searching/sublinear_search.c
Normal file
115
searching/sublinear_search.c
Normal file
@ -0,0 +1,115 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief Program to perform a "sublinear search" of a target
|
||||
* value in a given *sorted* array by skipping elements.
|
||||
* @authors [Your Name] - iterative and recursive algorithms
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
/** Recursive implementation
|
||||
* \param[in] arr array to search
|
||||
* \param[in] l left index of search range
|
||||
* \param[in] r right index of search range
|
||||
* \param[in] x target value to search for
|
||||
* \param[in] step_size the size of steps to skip in each search iteration
|
||||
* \returns location of x assuming array arr[l..r] is present
|
||||
* \returns -1 otherwise
|
||||
*/
|
||||
int sublinear_search_recursive(const int *arr, int l, int r, int x, int step_size)
|
||||
{
|
||||
if (l > r) {
|
||||
return -1; // Element is not present in array
|
||||
}
|
||||
|
||||
int mid = l + step_size;
|
||||
|
||||
// Check if we've found the element
|
||||
if (mid > r) {
|
||||
return -1; // Exceeded range without finding the element
|
||||
} else if (arr[mid] == x) {
|
||||
return mid; // Element found
|
||||
} else if (arr[mid] > x) {
|
||||
// If element at mid is greater than x, search the remaining part from l to mid - 1
|
||||
return sublinear_search_recursive(arr, l, mid - 1, x, 1);
|
||||
} else {
|
||||
// Else continue with a larger step from mid + step_size to r
|
||||
return sublinear_search_recursive(arr, mid + 1, r, x, step_size);
|
||||
}
|
||||
}
|
||||
|
||||
/** Iterative implementation
|
||||
* \param[in] arr array to search
|
||||
* \param[in] n length of the array
|
||||
* \param[in] x target value to search for
|
||||
* \param[in] step_size the size of steps to skip in each search iteration
|
||||
* \returns location of x assuming array arr is present
|
||||
* \returns -1 otherwise
|
||||
*/
|
||||
int sublinear_search_iterative(const int *arr, int n, int x, int step_size)
|
||||
{
|
||||
int i = 0;
|
||||
|
||||
// Traverse the array in steps of step_size
|
||||
while (i < n) {
|
||||
// Check if element is found at current position
|
||||
if (arr[i] == x) {
|
||||
return i;
|
||||
}
|
||||
// If the current element is greater than x, do a linear search backwards
|
||||
if (arr[i] > x) {
|
||||
for (int j = i - step_size + 1; j < i; j++) {
|
||||
if (j >= 0 && arr[j] == x) {
|
||||
return j;
|
||||
}
|
||||
}
|
||||
return -1; // Element not found
|
||||
}
|
||||
// Move to the next step
|
||||
i += step_size;
|
||||
}
|
||||
|
||||
// Check the last block linearly
|
||||
for (int j = i - step_size + 1; j < n; j++) {
|
||||
if (arr[j] == x) {
|
||||
return j;
|
||||
}
|
||||
}
|
||||
|
||||
return -1; // Element is not present in array
|
||||
}
|
||||
|
||||
/** Test implementations */
|
||||
void test()
|
||||
{
|
||||
int arr[] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19};
|
||||
int n = sizeof(arr) / sizeof(arr[0]);
|
||||
int step_size = sqrt(n); // Choosing a step size based on array size
|
||||
|
||||
printf("Test 1.... ");
|
||||
int x = 7;
|
||||
int result = sublinear_search_recursive(arr, 0, n - 1, x, step_size);
|
||||
assert(result == 3);
|
||||
printf("passed recursive... ");
|
||||
result = sublinear_search_iterative(arr, n, x, step_size);
|
||||
assert(result == 3);
|
||||
printf("passed iterative...\n");
|
||||
|
||||
printf("Test 2.... ");
|
||||
x = 8; // Element not in array
|
||||
result = sublinear_search_recursive(arr, 0, n - 1, x, step_size);
|
||||
assert(result == -1);
|
||||
printf("passed recursive... ");
|
||||
result = sublinear_search_iterative(arr, n, x, step_size);
|
||||
assert(result == -1);
|
||||
printf("passed iterative...\n");
|
||||
}
|
||||
|
||||
/** Main function */
|
||||
int main(void)
|
||||
{
|
||||
test();
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user