mirror of https://github.com/TheAlgorithms/C
* rename existing code as sol3 * Added naive implementation for Problem 5 * Added a solution for Euler Problem 5 with easy improvements * rename new files * code formatting * update documentations * fix docs * updating DIRECTORY.md Co-authored-by: buffet <niclas@countingsort.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
23b2a290fb
commit
bb6c62aa62
|
@ -319,7 +319,9 @@
|
|||
* Problem 401
|
||||
* [Sol1](https://github.com/TheAlgorithms/C/blob/master/project_euler/problem_401/sol1.c)
|
||||
* Problem 5
|
||||
* [Sol](https://github.com/TheAlgorithms/C/blob/master/project_euler/problem_5/sol.c)
|
||||
* [Sol1](https://github.com/TheAlgorithms/C/blob/master/project_euler/problem_5/sol1.c)
|
||||
* [Sol2](https://github.com/TheAlgorithms/C/blob/master/project_euler/problem_5/sol2.c)
|
||||
* [Sol3](https://github.com/TheAlgorithms/C/blob/master/project_euler/problem_5/sol3.c)
|
||||
* Problem 6
|
||||
* [Sol](https://github.com/TheAlgorithms/C/blob/master/project_euler/problem_6/sol.c)
|
||||
* Problem 7
|
||||
|
|
|
@ -0,0 +1,48 @@
|
|||
/**
|
||||
* \file
|
||||
* \brief [Problem 5](https://projecteuler.net/problem=5) solution - Naive
|
||||
* algorithm (slowest)
|
||||
*
|
||||
* \see Faster: problem_5/sol2.c
|
||||
* \see Fastest: problem_5/sol3.c
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** Pretty naive implementation. Just checks every number if it's devisable by 1
|
||||
* through 20
|
||||
* @param n number to check
|
||||
* @returns 0 if not divisible
|
||||
* @returns 1 if divisible
|
||||
*/
|
||||
static char check_number(unsigned long long n)
|
||||
{
|
||||
for (unsigned long long i = 1; i <= 20; ++i)
|
||||
{
|
||||
if (n % i != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
*
|
||||
* @return 0 on exit
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
for (unsigned long long n = 1;; ++n)
|
||||
{
|
||||
if (check_number(n))
|
||||
{
|
||||
printf("Result: %llu\n", n);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,59 @@
|
|||
/**
|
||||
* \file
|
||||
* \brief [Problem 5](https://projecteuler.net/problem=5) solution - Naive
|
||||
* algorithm (Improved over problem_5/sol1.c)
|
||||
* @details Little bit improved version of the naive `problem_5/sol1.c`. Since
|
||||
* the number has to be divisable by 20, we can start at 20 and go in 20 steps.
|
||||
* Also we don't have to check against any number, since most of them are
|
||||
* implied by other divisions (i.e. if a number is divisable by 20, it's also
|
||||
* divisable by 2, 5, and 10). This all gives a 97% perfomance increase on my
|
||||
* machine (9.562 vs 0.257)
|
||||
*
|
||||
* \see Slower: problem_5/sol1.c
|
||||
* \see Faster: problem_5/sol3.c
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/**
|
||||
* @brief Hack to store divisors between 1 & 20
|
||||
*/
|
||||
static unsigned int divisors[] = {
|
||||
11, 13, 14, 16, 17, 18, 19, 20,
|
||||
};
|
||||
|
||||
/** Checks if a given number is devisable by every number between 1 and 20
|
||||
* @param n number to check
|
||||
* @returns 0 if not divisible
|
||||
* @returns 1 if divisible
|
||||
*/
|
||||
static int check_number(unsigned long long n)
|
||||
{
|
||||
for (size_t i = 0; i < 7; ++i)
|
||||
{
|
||||
if (n % divisors[i] != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
*
|
||||
* @return 0 on exit
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
for (unsigned long long n = 20;; n += 20)
|
||||
{
|
||||
if (check_number(n))
|
||||
{
|
||||
printf("Result: %llu\n", n);
|
||||
break;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -1,12 +1,19 @@
|
|||
/**
|
||||
* \file
|
||||
* \brief [Problem 5](https://projecteuler.net/problem=5) solution
|
||||
* \brief [Problem 5](https://projecteuler.net/problem=5) solution (Fastest).
|
||||
* @details Solution is the LCM of all numbers between 1 and 20.
|
||||
*
|
||||
* \see Slowest: problem_5/sol1.c
|
||||
* \see Slower: problem_5/sol2.c
|
||||
*/
|
||||
#include <stdio.h>
|
||||
|
||||
/** Compute [Greatest Common Divisor
|
||||
* (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of two numbers
|
||||
* using Euclids algorithm
|
||||
* @param a first number
|
||||
* @param b second number
|
||||
* @return GCD of `a` and `b`
|
||||
*/
|
||||
unsigned long gcd(unsigned long a, unsigned long b)
|
||||
{
|
||||
|
@ -27,6 +34,9 @@ unsigned long gcd(unsigned long a, unsigned long b)
|
|||
|
||||
/** Compute [Least Common Multiple
|
||||
* (LCM)](https://en.wikipedia.org/wiki/Least_common_multiple) of two numbers
|
||||
* @param a first number
|
||||
* @param b second number
|
||||
* @return LCM of `a` and `b`
|
||||
*/
|
||||
unsigned long lcm(unsigned long a, unsigned long b)
|
||||
{
|
||||
|
@ -34,7 +44,9 @@ unsigned long lcm(unsigned long a, unsigned long b)
|
|||
return p / gcd(a, b);
|
||||
}
|
||||
|
||||
/** Main function */
|
||||
/** Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
unsigned long ans = 1;
|
Loading…
Reference in New Issue