Merge pull request #267 from PalAditya/master

Added code to find strongly connected components
This commit is contained in:
Stephen Curry 2019-10-02 22:58:17 +08:00 committed by GitHub
commit aeedac76f6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -0,0 +1,211 @@
#include <stdio.h>
#include <stdlib.h>
#define MAX_SIZE 40//Assume 40 nodes at max in graph
//A vertex of the graph
struct node
{
int vertex;
struct node* next;
};
//Some declarations
struct node* createNode(int v);
struct Graph
{
int numVertices;
int* visited;
struct node** adjLists; // we need int** to store a two dimensional array. Similary, we need struct node** to store an array of Linked lists
};
//Structure to create a stack, necessary for topological sorting
struct Stack
{
int arr[MAX_SIZE];
int top;
};
struct Graph* createGraph(int);
void addEdge(struct Graph*, int, int);
void printGraph(struct Graph*);
struct Graph* transpose(struct Graph*);
void fillOrder(int,struct Graph*, struct Stack*);
void scc(struct Graph*);
void dfs(struct Graph*, int);
struct Stack* createStack();
void push(struct Stack*, int);
int pop(struct Stack*);
int main()
{
int vertices,edges,i,src,dst;
printf("Enter the number of vertices\n");
scanf("%d",&vertices);
struct Graph* graph = createGraph(vertices);
printf("Enter the number of edges\n");
scanf("%d",&edges);
for(i=0; i<edges; i++)
{
printf("Edge %d \nEnter source: ",i+1);
scanf("%d",&src);
printf("Enter destination: ");
scanf("%d",&dst);
addEdge(graph, src, dst);
}
printf("The strongly connected conponents are:\n");
scc(graph);
printf("\n");
//Uncomment below part to get a ready-made example
/*struct Graph* graph2 = createGraph(4);
addEdge(graph2, 0, 1);
addEdge(graph2, 1, 2);
addEdge(graph2, 2, 0);
addEdge(graph2, 2, 3);
printf("The strongly connected components are:\n");
scc(graph2);
printf("\n");*/
return 0;
}
//Creates a topological sorting of the graph
void fillOrder(int vertex, struct Graph* graph, struct Stack* stack)
{
graph->visited[vertex]=1;
struct node* adjList = graph->adjLists[vertex];
struct node* temp = adjList;
//First add all dependents (that is, children) to stack
while(temp!=NULL) {
int connectedVertex = temp->vertex;
if(graph->visited[connectedVertex] == 0) {
fillOrder(connectedVertex, graph, stack);
}
temp=temp->next;
}
//and then add itself
push(stack,vertex);
}
//Transpose the adjacency list
struct Graph* transpose(struct Graph* g)
{
struct Graph* graph = createGraph(g->numVertices);//Number of vertices is same
int i=0;
for(i=0;i<g->numVertices;i++)
{
struct node* temp=g->adjLists[i];
while(temp!=NULL)
{
addEdge(graph,temp->vertex,i);//Reverse all edges
temp=temp->next;
}
}
return graph;
}
//Recursive dfs aproach
void dfs(struct Graph* graph, int vertex) {
struct node* adjList = graph->adjLists[vertex];
struct node* temp = adjList;
//Add vertex to visited list and print it
graph->visited[vertex] = 1;
printf("%d ", vertex);
//Recursively call the dfs function on all unvisited neighbours
while(temp!=NULL) {
int connectedVertex = temp->vertex;
if(graph->visited[connectedVertex] == 0) {
dfs(graph, connectedVertex);
}
temp = temp->next;
}
}
//Strongly connected components
void scc(struct Graph* graph)
{
//Step I: Create a topological sort of the graph and store it in a stack
struct Stack* stack=createStack();
int i=0;
for(i=0;i<graph->numVertices;i++)
{
//Execute topological sort on all elements
if(graph->visited[i]==0)
{
fillOrder(i,graph,stack);
}
}
//Step 2: Get the transpose graph
struct Graph* graphT=transpose(graph);
//Step 3: Perform a simple dfs by popping nodes from stack
while(stack->top!=-1)
{
int v=pop(stack);
if(graphT->visited[v]==0)
{
dfs(graphT,v);
printf("\n");
}
}
}
//Allocate memory for a node
struct node* createNode(int v)
{
struct node* newNode = malloc(sizeof(struct node));
newNode->vertex = v;
newNode->next = NULL;
return newNode;
}
//Allocate memory for the entire graph structure
struct Graph* createGraph(int vertices)
{
struct Graph* graph = malloc(sizeof(struct Graph));
graph->numVertices = vertices;
graph->adjLists = malloc(vertices * sizeof(struct node*));
graph->visited = malloc(vertices * sizeof(int));
int i;
for (i = 0; i < vertices; i++) {
graph->adjLists[i] = NULL;
graph->visited[i] = 0;
}
return graph;
}
//Creates a unidirectional graph
void addEdge(struct Graph* graph, int src, int dest)
{
// Add edge from src to dest
struct node* newNode = createNode(dest);
newNode->next = graph->adjLists[src];
graph->adjLists[src] = newNode;
}
//Utility function to see state of graph at a given time
void printGraph(struct Graph* graph)
{
int v;
for (v = 0; v < graph->numVertices; v++)
{
struct node* temp = graph->adjLists[v];
printf("\n Adjacency list of vertex %d\n ", v);
while (temp)
{
printf("%d -> ", temp->vertex);
temp = temp->next;
}
printf("\n");
}
}
//Creates a stack
struct Stack* createStack()
{
struct Stack* stack=malloc(sizeof(struct Stack));
stack->top=-1;
}
//Pushes element into stack
void push(struct Stack* stack,int element)
{
stack->arr[++stack->top]=element;//Increment then add, as we start from -1
}
//Removes element from stack, or returns INT_MIN if stack empty
int pop(struct Stack* stack)
{
if(stack->top==-1)
return INT_MIN;
else
return stack->arr[stack->top--];
}