mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-25 23:09:36 +03:00
Merge pull request #14 from kvedala/gitpod
Added Gitpod support - online IDE to create, edit and pull programs, build and test run
This commit is contained in:
commit
9fca032d5c
6
.github/pull_request_template.md
vendored
6
.github/pull_request_template.md
vendored
@ -3,17 +3,17 @@
|
||||
Thank you for your Pull Request. Please provide a description above and review
|
||||
the requirements below.
|
||||
|
||||
Contributors guide: https://github.com/TheAlgorithms/C-Plus-Plus/CONTRIBUTION.md
|
||||
Contributors guide: https://github.com/TheAlgorithms/C-Plus-Plus/CONTRIBUTING.md
|
||||
-->
|
||||
|
||||
#### Checklist
|
||||
<!-- Remove items that do not apply. For completed items, change [ ] to [x]. -->
|
||||
|
||||
- [ ] Added description of change
|
||||
- [ ] Added file name matches [File name guidelines](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/CONTRIBUTION.md#New-File-Name-guidelines)
|
||||
- [ ] Added file name matches [File name guidelines](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/CONTRIBUTING.md#New-File-Name-guidelines)
|
||||
- [ ] Added tests and example, test must pass
|
||||
- [ ] Relevant documentation/comments is changed or added
|
||||
- [ ] PR title follows semantic [commit guidelines](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/CONTRIBUTION.md#Commit-Guidelines)
|
||||
- [ ] PR title follows semantic [commit guidelines](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/CONTRIBUTING.md#Commit-Guidelines)
|
||||
- [ ] Search previous suggestions before making a new one, as yours may be a duplicate.
|
||||
- [ ] Sort by alphabetical order
|
||||
- [ ] I acknowledge that all my contributions will be made under the project's license.
|
||||
|
6
.gitpod.yml
Normal file
6
.gitpod.yml
Normal file
@ -0,0 +1,6 @@
|
||||
tasks:
|
||||
- init: >
|
||||
pip install cpplint
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Debug -DCMAKE_EXPORT_COMPILE_COMMANDS=ON &&
|
||||
cmake --build build -t all
|
||||
|
@ -1,5 +1,7 @@
|
||||
# The Algorithms - C # {#mainpage}
|
||||
[![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/kvedala/C-Plus-Plus/blob/master/CONTRIBUTION.md)
|
||||
[![Gitpod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/TheAlgorithms/C-Plus-Plus)
|
||||
[![Gitter chat](https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square)](https://gitter.im/TheAlgorithms)
|
||||
[![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/kvedala/C-Plus-Plus/blob/master/CONTRIBUTING.md)
|
||||
![GitHub repo size](https://img.shields.io/github/repo-size/kvedala/C-Plus-Plus?color=red&style=flat-square)
|
||||
![GitHub closed pull requests](https://img.shields.io/github/issues-pr-closed/kvedala/C?color=green&style=flat-square)
|
||||
![Doxygen CI](https://github.com/kvedala/C/workflows/Doxygen%20CI/badge.svg)
|
||||
@ -15,4 +17,4 @@ All the code can be executed and tested online: [![using Google Colab Notebook](
|
||||
The implementations are for learning purpose. They may be less efficient than the implementation in the standard library.
|
||||
|
||||
### Contribute Guidelines
|
||||
Read our [Contribution Guidelines](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/CONTRIBUTION.md) before you contribute.
|
||||
Read our [Contribution Guidelines](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/CONTRIBUTING.md) before you contribute.
|
||||
|
@ -6,12 +6,17 @@
|
||||
* \author [Krishna Vedala](https://github.com/kvedala)
|
||||
*/
|
||||
#include "qr_decompose.h"
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#define LIMS 9 /**< limit of range of matrix values */
|
||||
#define LIMS 9 /**< limit of range of matrix values */
|
||||
#define EPSILON 1e-10 /**< accuracy tolerance limit */
|
||||
|
||||
/**
|
||||
* create a square matrix of given size with random elements
|
||||
@ -21,8 +26,10 @@
|
||||
void create_matrix(double **A, int N)
|
||||
{
|
||||
int i, j, tmp, lim2 = LIMS >> 1;
|
||||
srand(time(NULL));
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (i = 0; i < N; i++)
|
||||
{
|
||||
A[i][i] = (rand() % LIMS) - lim2;
|
||||
@ -56,7 +63,12 @@ double **mat_mul(double **A, double **B, double **OUT, int R1, int C1, int R2,
|
||||
perror("Matrix dimensions mismatch!");
|
||||
return OUT;
|
||||
}
|
||||
for (int i = 0; i < R1; i++)
|
||||
|
||||
int i;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (i = 0; i < R1; i++)
|
||||
for (int j = 0; j < C2; j++)
|
||||
{
|
||||
OUT[i][j] = 0.f;
|
||||
@ -66,14 +78,240 @@ double **mat_mul(double **A, double **B, double **OUT, int R1, int C1, int R2,
|
||||
return OUT;
|
||||
}
|
||||
|
||||
/** Compute eigen values using iterative shifted QR decomposition algorithm as
|
||||
* follows:
|
||||
* 1. Use last diagonal element of A as eigen value approximation \f$c\f$
|
||||
* 2. Shift diagonals of matrix \f$A' = A - cI\f$
|
||||
* 3. Decompose matrix \f$A'=QR\f$
|
||||
* 4. Compute next approximation \f$A'_1 = RQ \f$
|
||||
* 5. Shift diagonals back \f$A_1 = A'_1 + cI\f$
|
||||
* 6. Termination condition check: last element below diagonal is almost 0
|
||||
* 1. If not 0, go back to step 1 with the new approximation \f$A_1\f$
|
||||
* 2. If 0, continue to step 7
|
||||
* 7. Save last known \f$c\f$ as the eigen value.
|
||||
* 8. Are all eigen values found?
|
||||
* 1. If not, remove last row and column of \f$A_1\f$ and go back to step 1.
|
||||
* 2. If yes, stop.
|
||||
*
|
||||
* \note The matrix \f$A\f$ gets modified
|
||||
*
|
||||
* \param[in,out] A matrix to compute eigen values for
|
||||
* \param[out] eig_vals resultant vector containing computed eigen values
|
||||
* \param[in] mat_size matrix size
|
||||
* \param[in] debug_print 1 to print intermediate Q & R matrices, 0 for not to
|
||||
* \returns time for computation in seconds
|
||||
*/
|
||||
double eigen_values(double **A, double *eigen_vals, int mat_size,
|
||||
char debug_print)
|
||||
{
|
||||
double **R = (double **)malloc(sizeof(double *) * mat_size);
|
||||
double **Q = (double **)malloc(sizeof(double *) * mat_size);
|
||||
|
||||
if (!eigen_vals)
|
||||
{
|
||||
perror("Output eigen value vector cannot be NULL!");
|
||||
return -1;
|
||||
}
|
||||
else if (!Q || !R)
|
||||
{
|
||||
perror("Unable to allocate memory for Q & R!");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* allocate dynamic memory for matrices */
|
||||
for (int i = 0; i < mat_size; i++)
|
||||
{
|
||||
R[i] = (double *)malloc(sizeof(double) * mat_size);
|
||||
Q[i] = (double *)malloc(sizeof(double) * mat_size);
|
||||
if (!Q[i] || !R[i])
|
||||
{
|
||||
perror("Unable to allocate memory for Q & R.");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (debug_print)
|
||||
print_matrix(A, mat_size, mat_size);
|
||||
|
||||
int rows = mat_size, columns = mat_size;
|
||||
int counter = 0, num_eigs = rows - 1;
|
||||
double last_eig = 0;
|
||||
|
||||
clock_t t1 = clock();
|
||||
while (num_eigs > 0) /* continue till all eigen values are found */
|
||||
{
|
||||
/* iterate with QR decomposition */
|
||||
while (fabs(A[num_eigs][num_eigs - 1]) > EPSILON)
|
||||
{
|
||||
last_eig = A[num_eigs][num_eigs];
|
||||
for (int i = 0; i < rows; i++)
|
||||
A[i][i] -= last_eig; /* A - cI */
|
||||
qr_decompose(A, Q, R, rows, columns);
|
||||
|
||||
if (debug_print)
|
||||
{
|
||||
print_matrix(A, rows, columns);
|
||||
print_matrix(Q, rows, columns);
|
||||
print_matrix(R, columns, columns);
|
||||
printf("-------------------- %d ---------------------\n",
|
||||
++counter);
|
||||
}
|
||||
|
||||
mat_mul(R, Q, A, columns, columns, rows, columns);
|
||||
for (int i = 0; i < rows; i++)
|
||||
A[i][i] += last_eig; /* A + cI */
|
||||
}
|
||||
|
||||
/* store the converged eigen value */
|
||||
eigen_vals[num_eigs] = last_eig;
|
||||
|
||||
if (debug_print)
|
||||
{
|
||||
printf("========================\n");
|
||||
printf("Eigen value: % g,\n", last_eig);
|
||||
printf("========================\n");
|
||||
}
|
||||
|
||||
num_eigs--;
|
||||
rows--;
|
||||
columns--;
|
||||
}
|
||||
eigen_vals[0] = A[0][0];
|
||||
double dtime = (double)(clock() - t1) / CLOCKS_PER_SEC;
|
||||
|
||||
if (debug_print)
|
||||
{
|
||||
print_matrix(R, mat_size, mat_size);
|
||||
print_matrix(Q, mat_size, mat_size);
|
||||
}
|
||||
|
||||
/* cleanup dynamic memory */
|
||||
for (int i = 0; i < mat_size; i++)
|
||||
{
|
||||
free(R[i]);
|
||||
free(Q[i]);
|
||||
}
|
||||
free(R);
|
||||
free(Q);
|
||||
|
||||
return dtime;
|
||||
}
|
||||
|
||||
/**
|
||||
* test function to compute eigen values of a 2x2 matrix
|
||||
* \f[\begin{bmatrix}
|
||||
* 5 & 7\\
|
||||
* 7 & 11
|
||||
* \end{bmatrix}\f]
|
||||
* which are approximately, {15.56158, 0.384227}
|
||||
*/
|
||||
void test1()
|
||||
{
|
||||
int mat_size = 2;
|
||||
double X[][2] = {{5, 7}, {7, 11}};
|
||||
double y[] = {15.56158, 0.384227}; // corresponding y-values
|
||||
double eig_vals[2];
|
||||
|
||||
// The following steps are to convert a "double[][]" to "double **"
|
||||
double **A = (double **)malloc(mat_size * sizeof(double *));
|
||||
for (int i = 0; i < mat_size; i++)
|
||||
A[i] = X[i];
|
||||
|
||||
printf("------- Test 1 -------\n");
|
||||
|
||||
double dtime = eigen_values(A, eig_vals, mat_size, 0);
|
||||
|
||||
for (int i = 0; i < mat_size; i++)
|
||||
{
|
||||
printf("%d/5 Checking for %.3g --> ", i + 1, y[i]);
|
||||
char result = 0;
|
||||
for (int j = 0; j < mat_size && !result; j++)
|
||||
{
|
||||
if (fabs(y[i] - eig_vals[j]) < 0.1)
|
||||
{
|
||||
result = 1;
|
||||
printf("(%.3g) ", eig_vals[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// ensure that i^th expected eigen value was computed
|
||||
assert(result != 0);
|
||||
printf("found\n");
|
||||
}
|
||||
printf("Test 1 Passed in %.3g sec\n\n", dtime);
|
||||
free(A);
|
||||
}
|
||||
|
||||
/**
|
||||
* test function to compute eigen values of a 2x2 matrix
|
||||
* \f[\begin{bmatrix}
|
||||
* -4& 4& 2& 0& -3\\
|
||||
* 4& -4& 4& -3& -1\\
|
||||
* 2& 4& 4& 3& -3\\
|
||||
* 0& -3& 3& -1&-1\\
|
||||
* -3& -1& -3& -3& 0
|
||||
* \end{bmatrix}\f]
|
||||
* which are approximately, {9.27648, -9.26948, 2.0181, -1.03516, -5.98994}
|
||||
*/
|
||||
void test2()
|
||||
{
|
||||
int mat_size = 5;
|
||||
double X[][5] = {{-4, 4, 2, 0, -3},
|
||||
{4, -4, 4, -3, -1},
|
||||
{2, 4, 4, 3, -3},
|
||||
{0, -3, 3, -1, -3},
|
||||
{-3, -1, -3, -3, 0}};
|
||||
double y[] = {9.27648, -9.26948, 2.0181, -1.03516,
|
||||
-5.98994}; // corresponding y-values
|
||||
double eig_vals[5];
|
||||
|
||||
// The following steps are to convert a "double[][]" to "double **"
|
||||
double **A = (double **)malloc(mat_size * sizeof(double *));
|
||||
for (int i = 0; i < mat_size; i++)
|
||||
A[i] = X[i];
|
||||
|
||||
printf("------- Test 2 -------\n");
|
||||
|
||||
double dtime = eigen_values(A, eig_vals, mat_size, 0);
|
||||
|
||||
for (int i = 0; i < mat_size; i++)
|
||||
{
|
||||
printf("%d/5 Checking for %.3g --> ", i + 1, y[i]);
|
||||
char result = 0;
|
||||
for (int j = 0; j < mat_size && !result; j++)
|
||||
{
|
||||
if (fabs(y[i] - eig_vals[j]) < 0.1)
|
||||
{
|
||||
result = 1;
|
||||
printf("(%.3g) ", eig_vals[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// ensure that i^th expected eigen value was computed
|
||||
assert(result != 0);
|
||||
printf("found\n");
|
||||
}
|
||||
printf("Test 2 Passed in %.3g sec\n\n", dtime);
|
||||
free(A);
|
||||
}
|
||||
|
||||
/**
|
||||
* main function
|
||||
*/
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
srand(time(NULL));
|
||||
|
||||
int mat_size = 5;
|
||||
if (argc == 2)
|
||||
mat_size = atoi(argv[1]);
|
||||
else
|
||||
{ // if invalid input argument is given run tests
|
||||
test1();
|
||||
test2();
|
||||
printf("Usage: ./qr_eigen_values [mat_size]\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (mat_size < 2)
|
||||
{
|
||||
@ -84,26 +322,16 @@ int main(int argc, char **argv)
|
||||
int i, rows = mat_size, columns = mat_size;
|
||||
|
||||
double **A = (double **)malloc(sizeof(double *) * mat_size);
|
||||
double **R = (double **)malloc(sizeof(double *) * mat_size);
|
||||
double **Q = (double **)malloc(sizeof(double *) * mat_size);
|
||||
|
||||
/* number of eigen values = matrix size */
|
||||
double *eigen_vals = (double *)malloc(sizeof(double) * mat_size);
|
||||
if (!Q || !R || !eigen_vals)
|
||||
if (!eigen_vals)
|
||||
{
|
||||
perror("Unable to allocate memory for Q & R!");
|
||||
perror("Unable to allocate memory for eigen values!");
|
||||
return -1;
|
||||
}
|
||||
for (i = 0; i < mat_size; i++)
|
||||
{
|
||||
A[i] = (double *)malloc(sizeof(double) * mat_size);
|
||||
R[i] = (double *)malloc(sizeof(double) * mat_size);
|
||||
Q[i] = (double *)malloc(sizeof(double) * mat_size);
|
||||
if (!Q[i] || !R[i])
|
||||
{
|
||||
perror("Unable to allocate memory for Q & R.");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* create a random matrix */
|
||||
@ -111,64 +339,15 @@ int main(int argc, char **argv)
|
||||
|
||||
print_matrix(A, mat_size, mat_size);
|
||||
|
||||
int counter = 0, num_eigs = rows - 1;
|
||||
double last_eig = 0;
|
||||
|
||||
clock_t t1 = clock();
|
||||
while (num_eigs > 0) /* continue till all eigen values are found */
|
||||
{
|
||||
/* iterate with QR decomposition */
|
||||
while (fabs(A[num_eigs][num_eigs - 1]) > 1e-10)
|
||||
{
|
||||
last_eig = A[num_eigs][num_eigs];
|
||||
for (int i = 0; i < rows; i++)
|
||||
A[i][i] -= last_eig; /* A - cI */
|
||||
qr_decompose(A, Q, R, rows, columns);
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
print_matrix(A, rows, columns);
|
||||
print_matrix(Q, rows, columns);
|
||||
print_matrix(R, columns, columns);
|
||||
printf("-------------------- %d ---------------------\n",
|
||||
++counter);
|
||||
#endif
|
||||
mat_mul(R, Q, A, columns, columns, rows, columns);
|
||||
for (int i = 0; i < rows; i++)
|
||||
A[i][i] += last_eig; /* A + cI */
|
||||
}
|
||||
|
||||
/* store the converged eigen value */
|
||||
eigen_vals[num_eigs] = A[num_eigs][num_eigs];
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
printf("========================\n");
|
||||
printf("Eigen value: % g,\n", last_eig);
|
||||
printf("========================\n");
|
||||
#endif
|
||||
num_eigs--;
|
||||
rows--;
|
||||
columns--;
|
||||
}
|
||||
eigen_vals[0] = A[0][0];
|
||||
double dtime = (double)(clock() - t1) / CLOCKS_PER_SEC;
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
print_matrix(R, mat_size, mat_size);
|
||||
print_matrix(Q, mat_size, mat_size);
|
||||
#endif
|
||||
double dtime = eigen_values(A, eigen_vals, mat_size, 0);
|
||||
printf("Eigen vals: ");
|
||||
for (i = 0; i < mat_size; i++)
|
||||
printf("% 9.4g\t", eigen_vals[i]);
|
||||
printf("\nTime taken to compute: % .4g sec\n", dtime);
|
||||
|
||||
for (int i = 0; i < mat_size; i++)
|
||||
{
|
||||
free(A[i]);
|
||||
free(R[i]);
|
||||
free(Q[i]);
|
||||
}
|
||||
free(A);
|
||||
free(R);
|
||||
free(Q);
|
||||
free(eigen_vals);
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user