added first order ODE solver using Euler method

This commit is contained in:
Krishna Vedala 2020-06-10 11:36:44 -04:00
parent 4e7bf1566a
commit 8ea77b8ca4
No known key found for this signature in database
GPG Key ID: BA19ACF8FC8792F7

View File

@ -0,0 +1,151 @@
/**
* \file
* \authors [Krishna Vedala](https://github.com/kvedala)
* \brief Solve a multivariable first order [ordinary differential equation
* (ODEs)](https://en.wikipedia.org/wiki/Ordinary_differential_equation) using
* [forward Euler
* method](https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations#Euler_method)
*
* \description
* The ODE being solved is:
* \f{eqnarray*}{
* \dot{u} &=& v\\
* \dot{v} &=& -\omega^2 u\\
* \omega &=& 1\\
* [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)}
* \f}
* The exact solution for the above problem is:
* \f{eqnarray*}{
* u(x) &=& \cos(x)\\
* v(x) &=& -\sin(x)\\
* \f}
* The computation results are stored to a text file `forward_euler.csv` and the
* exact soltuion results in `exact.csv` for comparison.
* <img
* src="https://raw.githubusercontent.com/kvedala/C/docs/images/numerical_methods/ode_forward_euler.svg"
* alt="Implementation solution"/>
*/
#include <math.h>
#include <stdio.h>
#include <time.h>
#define order 2 /**< number of dependent variables in ::problem */
/**
* @brief Problem statement for a system with first-order differential
* equations. Updates the system differential variables.
* \note This function can be updated to and ode of any order.
*
* @param[in] x independent variable(s)
* @param[in,out] y dependent variable(s)
* @param[in,out] dy first-derivative of dependent variable(s)
*/
void problem(double *x, double *y, double *dy)
{
const double omega = 1.F; // some const for the problem
dy[0] = y[1]; // x dot
dy[1] = -omega * omega * y[0]; // y dot
}
/**
* @brief Exact solution of the problem. Used for solution comparison.
*
* @param[in] x independent variable
* @param[in,out] y dependent variable
*/
void exact_solution(double *x, double *y)
{
y[0] = cos(x[0]);
y[1] = -sin(x[0]);
}
/**
* @brief Compute next step approximation using the forward-Euler
* method. @f[y_{n+1}=y_n + dx\cdot f\left(x_n,y_n\right)@f]
* @param[in] dx step size
* @param[in,out] x take \f$x_n\f$ and compute \f$x_{n+1}\f$
* @param[in,out] y take \f$y_n\f$ and compute \f$y_{n+1}\f$
* @param[in,out] dy compute \f$f\left(x_n,y_n\right)\f$
* @param[in] order order of algorithm implementation
*/
void forward_euler(double dx, double *x, double *y, double *dy)
{
int o;
problem(x, y, dy);
for (o = 0; o < order; o++)
y[o] += dx * dy[o];
*x += dx;
}
/**
Main Function
*/
int main(int argc, char *argv[])
{
double X0 = 0.f; /* initial value of f(x = x0) */
double Y0[] = {1.f, 0.f}; /* initial value Y = y(x = x_0) */
double dx, dy[order];
double x = X0, *y = &(Y0[0]);
double X_MAX = 10.F; /* upper limit of integration */
if (argc == 1)
{
printf("\nEnter the step size: ");
scanf("%lg", &dx);
}
else
// use commandline argument as independent variable step size
dx = atof(argv[1]);
clock_t t1, t2;
double total_time;
FILE *fp = fopen("forward_euler.csv", "w+");
if (fp == NULL)
{
perror("Error! ");
return -1;
}
printf("Computing using 'Forward Euler' algorithm\n");
/* start integration */
t1 = clock();
do // iterate for each step of independent variable
{
fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file
forward_euler(dx, &x, y, dy); // perform integration
} while (x <= X_MAX); // till upper limit of independent variable
/* end of integration */
t2 = clock();
fclose(fp);
total_time = (t2 - t1) / CLOCKS_PER_SEC;
printf("\tTime taken = %.6g ms\n", total_time);
/* compute exact solution for comparion */
fp = fopen("exact.csv", "w+");
if (fp == NULL)
{
perror("Error! ");
return -1;
}
x = X0;
y = Y0;
printf("Finding exact solution\n");
t1 = clock();
do
{
fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file
exact_solution(&x, y);
x += dx;
} while (x <= X_MAX);
t2 = clock();
total_time = (t2 - t1) / CLOCKS_PER_SEC;
printf("\tTime = %.6g ms\n", total_time);
fclose(fp);
return 0;
}