fixed documentations

This commit is contained in:
Krishna Vedala 2020-06-28 15:18:52 -04:00
parent aa8d74543f
commit 6470f0318b
No known key found for this signature in database
GPG Key ID: BA19ACF8FC8792F7
20 changed files with 92 additions and 94 deletions

View File

@ -22,7 +22,7 @@
/** /**
* Node, the basic data structure of the tree * Node, the basic data structure of the tree
**/ */
typedef struct Node typedef struct Node
{ {
int data; /**< stores the number */ int data; /**< stores the number */
@ -34,7 +34,7 @@ typedef struct Node
* creates a new node * creates a new node
* param[in] data value to be inserted * param[in] data value to be inserted
* \returns a pointer to the new node * \returns a pointer to the new node
**/ */
node *create_node(int data) node *create_node(int data)
{ {
node *ptr = (node *)malloc(sizeof(node)); node *ptr = (node *)malloc(sizeof(node));

View File

@ -30,17 +30,18 @@
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
#define MAX_ITER 500 // INT_MAX ///< Maximum number of iterations to learn /** Maximum number of iterations to learn */
#define MAX_ITER 500 // INT_MAX
/** structure to hold adaline model parameters */ /** structure to hold adaline model parameters */
struct adaline struct adaline
{ {
double eta; ///< learning rate of the algorithm double eta; /**< learning rate of the algorithm */
double *weights; ///< weights of the neural network double *weights; /**< weights of the neural network */
int num_weights; ///< number of weights of the neural network int num_weights; /**< number of weights of the neural network */
}; };
#define ACCURACY 1e-5 ///< convergence accuracy \f$=1\times10^{-5}\f$ #define ACCURACY 1e-5 /**< convergence accuracy \f$=1\times10^{-5}\f$ */
/** /**
* Default constructor * Default constructor

View File

@ -28,14 +28,12 @@
#endif #endif
#ifndef max #ifndef max
#define max(a, b) \ /** shorthand for maximum value */
(((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \ #define max(a, b) (((a) > (b)) ? (a) : (b))
*/
#endif #endif
#ifndef min #ifndef min
#define min(a, b) \ /** shorthand for minimum value */
(((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \ #define min(a, b) (((a) < (b)) ? (a) : (b))
*/
#endif #endif
/** to store info regarding 3D arrays */ /** to store info regarding 3D arrays */
@ -193,8 +191,8 @@ int save_u_matrix(const char *fname, struct array_3d *W)
* \param[in] X matrix to search * \param[in] X matrix to search
* \param[in] N number of points in the vector * \param[in] N number of points in the vector
* \param[out] val minimum value found * \param[out] val minimum value found
* \param[out] idx_x x-index where minimum value was found * \param[out] x_idx x-index where minimum value was found
* \param[out] idx_y y-index where minimum value was found * \param[out] y_idx y-index where minimum value was found
*/ */
void get_min_2d(double **X, int N, double *val, int *x_idx, int *y_idx) void get_min_2d(double **X, int N, double *val, int *x_idx, int *y_idx)
{ {
@ -300,7 +298,6 @@ double update_weights(const double *X, struct array_3d *W, double **D,
* *
* \param[in] X data set * \param[in] X data set
* \param[in,out] W weights matrix * \param[in,out] W weights matrix
* \param[in] D temporary vector to store distances
* \param[in] num_samples number of output points * \param[in] num_samples number of output points
* \param[in] num_features number of features per input sample * \param[in] num_features number of features per input sample
* \param[in] num_out number of output points * \param[in] num_out number of output points

View File

@ -5,6 +5,7 @@
* *
* \author [Krishna Vedala](https://github.com/kvedala) * \author [Krishna Vedala](https://github.com/kvedala)
* *
* \details
* This example implements a powerful self organizing map algorithm. * This example implements a powerful self organizing map algorithm.
* The algorithm creates a connected network of weights that closely * The algorithm creates a connected network of weights that closely
* follows the given data points. This this creates a chain of nodes that * follows the given data points. This this creates a chain of nodes that
@ -16,23 +17,22 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
#ifdef _OPENMP // check if OpenMP based parallellization is available #ifdef _OPENMP // check if OpenMP based parallelization is available
#include <omp.h> #include <omp.h>
#endif #endif
#ifndef max #ifndef max
#define max(a, b) \ /** shorthand for maximum value */
(((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \ #define max(a, b) (((a) > (b)) ? (a) : (b))
*/
#endif #endif
#ifndef min #ifndef min
#define min(a, b) \ /** shorthand for minimum value */
(((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \ #define min(a, b) (((a) < (b)) ? (a) : (b))
*/
#endif #endif
/** /**
* Helper function to generate a random number in a given interval. * \brief Helper function to generate a random number in a given interval.
* \details
* \n Steps: * \n Steps:
* 1. `r1 = rand() % 100` gets a random number between 0 and 99 * 1. `r1 = rand() % 100` gets a random number between 0 and 99
* 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99 * 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99
@ -41,13 +41,14 @@
* y = (b - a) \times \frac{\text{(random number between 0 and RAND_MAX)} \; * y = (b - a) \times \frac{\text{(random number between 0 and RAND_MAX)} \;
* \text{mod}\; 100}{100} + a \f] * \text{mod}\; 100}{100} + a \f]
* *
* \param[in] a lower limit * \param a lower limit
* \param[in] b upper limit * \param b upper limit
* \returns random number in the range \f$[a,b)\f$ * \returns random number in the range \f$[a,b)\f$
*/ */
double _random(double a, double b) double _random(double a, double b)
{ {
return ((b - a) * (rand() % 100) / 100.f) + a; int r = rand() % 100;
return ((b - a) * r / 100.f) + a;
} }
/** /**
@ -89,7 +90,7 @@ int save_nd_data(const char *fname, double **X, int num_points,
/** /**
* Get minimum value and index of the value in a vector * Get minimum value and index of the value in a vector
* \param[in] x vector to search * \param[in] X vector to search
* \param[in] N number of points in the vector * \param[in] N number of points in the vector
* \param[out] val minimum value found * \param[out] val minimum value found
* \param[out] idx index where minimum value was found * \param[out] idx index where minimum value was found
@ -111,7 +112,7 @@ void get_min_1d(double const *X, int N, double *val, int *idx)
/** /**
* Update weights of the SOM using Kohonen algorithm * Update weights of the SOM using Kohonen algorithm
* *
* \param[in] X data point * \param[in] x data point
* \param[in,out] W weights matrix * \param[in,out] W weights matrix
* \param[in,out] D temporary vector to store distances * \param[in,out] D temporary vector to store distances
* \param[in] num_out number of output points * \param[in] num_out number of output points
@ -164,7 +165,6 @@ void update_weights(double const *x, double *const *W, double *D, int num_out,
* *
* \param[in] X data set * \param[in] X data set
* \param[in,out] W weights matrix * \param[in,out] W weights matrix
* \param[in] D temporary vector to store distances
* \param[in] num_samples number of output points * \param[in] num_samples number of output points
* \param[in] num_features number of features per input sample * \param[in] num_features number of features per input sample
* \param[in] num_out number of output points * \param[in] num_out number of output points

View File

@ -6,7 +6,7 @@ const double pi = 3.141592653589793238462643383279502884;
/** /**
give as arguments to the executable two x and y coordinates give as arguments to the executable two x and y coordinates
outputs a polar coordinate outputs a polar coordinate
**/ */
int main() int main()
{ {
double x, y; double x, y;

View File

@ -10,7 +10,7 @@
/** /**
* dynamically large number * dynamically large number
**/ */
typedef struct _large_num typedef struct _large_num
{ {
char *digits; /**< array to store individual digits */ char *digits; /**< array to store individual digits */
@ -20,7 +20,7 @@ typedef struct _large_num
/** /**
* create a new large number * create a new large number
* \returns pointer to a large number * \returns pointer to a large number
**/ */
large_num *new_number(void) large_num *new_number(void)
{ {
large_num *new_num = (large_num *)malloc(sizeof(large_num)); large_num *new_num = (large_num *)malloc(sizeof(large_num));
@ -33,7 +33,7 @@ large_num *new_number(void)
/** /**
* delete all memory allocated for large number * delete all memory allocated for large number
* \param[in] num pointer to large_num to delete * \param[in] num pointer to large_num to delete
**/ */
void delete_number(large_num *num) void delete_number(large_num *num)
{ {
free(num->digits); free(num->digits);
@ -44,7 +44,7 @@ void delete_number(large_num *num)
* add a digit to the large number * add a digit to the large number
* \param[in,out] num * \param[in,out] num
* \param[in] value value of the digit to insert * \param[in] value value of the digit to insert
**/ */
void add_digit(large_num *num, unsigned int value) void add_digit(large_num *num, unsigned int value)
{ {
if (value > 9) if (value > 9)
@ -62,7 +62,7 @@ void add_digit(large_num *num, unsigned int value)
/** /**
* multiply large number with another integer and * multiply large number with another integer and
* store the result in the same large number * store the result in the same large number
**/ */
void multiply(large_num *num, unsigned long n) void multiply(large_num *num, unsigned long n)
{ {
int i; int i;

View File

@ -46,7 +46,7 @@
* \param[in] degree degree of polynomial * \param[in] degree degree of polynomial
* \param[in] x point at which to evaluate the polynomial * \param[in] x point at which to evaluate the polynomial
* \returns \f$f(x)\f$ * \returns \f$f(x)\f$
**/ */
long double complex poly_function(double *coeffs, unsigned int degree, long double complex poly_function(double *coeffs, unsigned int degree,
long double complex x) long double complex x)
{ {
@ -91,7 +91,7 @@ char check_termination(long double delta)
/*** /***
* the comandline inputs are taken as coeffiecients of a polynomial * the comandline inputs are taken as coeffiecients of a polynomial
**/ */
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
double *coeffs = NULL; double *coeffs = NULL;
@ -130,7 +130,7 @@ int main(int argc, char **argv)
#if defined(DEBUG) || !defined(NDEBUG) #if defined(DEBUG) || !defined(NDEBUG)
/** /**
* store intermediate values to a CSV file * store intermediate values to a CSV file
**/ */
FILE *log_file = fopen("durand_kerner.log.csv", "wt"); FILE *log_file = fopen("durand_kerner.log.csv", "wt");
if (!log_file) if (!log_file)
{ {

View File

@ -4,7 +4,7 @@
* Newton-Raphson interpolation algorithm. * Newton-Raphson interpolation algorithm.
* *
* \author [Krishna Vedala](https://github.com/kvedala) * \author [Krishna Vedala](https://github.com/kvedala)
**/ */
#include <complex.h> /* requires minimum of C99 */ #include <complex.h> /* requires minimum of C99 */
#include <limits.h> #include <limits.h>

View File

@ -10,6 +10,7 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
#include "qr_decompose.h" #include "qr_decompose.h"
#ifdef _OPENMP #ifdef _OPENMP
#include <omp.h> #include <omp.h>
@ -95,7 +96,7 @@ double **mat_mul(double **A, double **B, double **OUT, int R1, int C1, int R2,
* \note The matrix \f$A\f$ gets modified * \note The matrix \f$A\f$ gets modified
* *
* \param[in,out] A matrix to compute eigen values for * \param[in,out] A matrix to compute eigen values for
* \param[out] eig_vals resultant vector containing computed eigen values * \param[out] eigen_vals resultant vector containing computed eigen values
* \param[in] mat_size matrix size * \param[in] mat_size matrix size
* \param[in] debug_print 1 to print intermediate Q & R matrices, 0 for not to * \param[in] debug_print 1 to print intermediate Q & R matrices, 0 for not to
* \returns time for computation in seconds * \returns time for computation in seconds

View File

@ -40,7 +40,7 @@ int get_number(FILE *fp, char *buffer, uint8_t *out_int)
/** /**
* Function to add arbitraty length decimal integers stored in an array. * Function to add arbitraty length decimal integers stored in an array.
* a + b = c = new b * a + b = c = new b
**/ */
int add_numbers(uint8_t *a, uint8_t *b, uint8_t N) int add_numbers(uint8_t *a, uint8_t *b, uint8_t N)
{ {
int carry = 0; int carry = 0;

View File

@ -23,7 +23,7 @@
/** /**
* Computes the length of collatz sequence for a given * Computes the length of collatz sequence for a given
* starting number * starting number
**/ */
long long collatz(long long start_num) long long collatz(long long start_num)
{ {
long long length = 1; long long length = 1;

View File

@ -13,7 +13,7 @@
* and N right options, without preference for order. * and N right options, without preference for order.
* Hence, the path can be be traced in N out of 2N number of ways. * Hence, the path can be be traced in N out of 2N number of ways.
* This is the same as binomial coeeficient. * This is the same as binomial coeeficient.
**/ */
unsigned long long number_of_paths(int N) unsigned long long number_of_paths(int N)
{ {
unsigned long long path = 1; unsigned long long path = 1;

View File

@ -10,7 +10,7 @@
* Month is identified by an integer -\n * Month is identified by an integer -\n
* > 0 = Jan and 11 = December\n * > 0 = Jan and 11 = December\n
* For February, adjust for leap year outside the function. * For February, adjust for leap year outside the function.
**/ */
char get_month_days(short month) char get_month_days(short month)
{ {
if (month == 1) /* February has 28 days. Adjust leap year in the loop */ if (month == 1) /* February has 28 days. Adjust leap year in the loop */
@ -37,7 +37,7 @@ char get_month_days(short month)
/** /**
* return 1 if input year is a leap year * return 1 if input year is a leap year
* otherwise, return 0 * otherwise, return 0
**/ */
char is_leap_year(short year) char is_leap_year(short year)
{ {
if ((year % 400 == 0) || ((year % 4 == 0) && (year % 100 != 0))) if ((year % 400 == 0) || ((year % 4 == 0) && (year % 100 != 0)))
@ -79,10 +79,10 @@ int main(int argc, char **argv)
const short start_year = 1901; const short start_year = 1901;
const short end_year = 2000; const short end_year = 2000;
/** /*
* Let us identify days i.e., Sunday thru Saturday with integers - 0 thru 6 * Let us identify days i.e., Sunday thru Saturday with integers - 0 thru 6
* respectively Jan 1 1901 was a Tuesday * respectively Jan 1 1901 was a Tuesday
**/ */
char start_day = 2; char start_day = 2;
for (int year = start_year; year <= end_year; year++) for (int year = start_year; year <= end_year; year++)
@ -90,9 +90,10 @@ int main(int argc, char **argv)
char is_leap = is_leap_year(year); char is_leap = is_leap_year(year);
for (char month = 0; month < 12; month++) for (char month = 0; month < 12; month++)
{ {
/** /*
* These two for-loops count the start of day for the next month. * These two for-loops count the start of day for the next month.
* Hence, we have to skip the last December count */ * Hence, we have to skip the last December count
*/
if (year == end_year && month == 11) if (year == end_year && month == 11)
continue; continue;
@ -109,11 +110,11 @@ int main(int argc, char **argv)
} }
#endif #endif
/** Main Algorithm: /* Main Algorithm:
* every week has 7 days hence, the start of next day would be * every week has 7 days hence, the start of next day would be
*modulo 7 add to this, the current start date and ensure the result * modulo 7 add to this, the current start date and ensure the
*is still modulo 7! * result is still modulo 7!
**/ */
start_day = ((days % 7) + start_day) % 7; start_day = ((days % 7) + start_day) % 7;
/* If start-day is a Sunday, increment counter */ /* If start-day is a Sunday, increment counter */

View File

@ -3,7 +3,7 @@
* \brief [Problem 20](https://projecteuler.net/problem=20) solution * \brief [Problem 20](https://projecteuler.net/problem=20) solution
* \author [Krishna Vedala](https://github.com/kvedala) * \author [Krishna Vedala](https://github.com/kvedala)
* *
* Implementation uses a custom `big_int` structure that can store arbitrarilty * Implementation uses a custom `big_int` structure that can store arbitrarily
* large integer numbers. * large integer numbers.
*/ */
#include <stdio.h> #include <stdio.h>
@ -13,12 +13,12 @@
/** /**
* store arbitratily large integer values * store arbitratily large integer values
* as a linked list of digits. * as a linked list of digits.
**/ */
typedef struct _big_int typedef struct _big_int
{ {
char value; /** tens place (single digit) */ char value; /**< tens place (single digit) */
struct _big_int *next_digit; /** hundreds place */ struct _big_int *next_digit; /**< hundreds place */
struct _big_int *prev_digit; /** units place */ struct _big_int *prev_digit; /**< units place */
} big_int; } big_int;
#ifdef DEBUG #ifdef DEBUG
@ -33,7 +33,7 @@ void print_digit(const big_int *my_int)
/** /**
* Function that allocates memory to add another * Function that allocates memory to add another
* digit at the MSB * digit at the MSB
**/ */
big_int *add_digit(big_int *digit, char value) big_int *add_digit(big_int *digit, char value)
{ {
if (digit == NULL) if (digit == NULL)
@ -72,7 +72,7 @@ big_int *add_digit(big_int *digit, char value)
/** /**
* Function to remove digits preceeding the * Function to remove digits preceeding the
* current digit. * current digit.
**/ */
char remove_digits(big_int *digit, int N) char remove_digits(big_int *digit, int N)
{ {
if (digit == NULL) if (digit == NULL)
@ -133,10 +133,10 @@ int main(int argc, char **argv)
ptr->value = tmp; ptr->value = tmp;
if (i == N) if (i == N)
/** /*
* sum digits on the last iteration * sum digits on the last iteration
* this avoid having another loop over all digits * this avoid having another loop over all digits
**/ */
sum_digits += tmp; sum_digits += tmp;
if (ptr->next_digit) if (ptr->next_digit)
@ -158,9 +158,9 @@ int main(int argc, char **argv)
printf("%d! = ", N); printf("%d! = ", N);
#endif #endif
/** Notice that in the loop above, we make sure that at the end of the loop, /* Notice that in the loop above, we make sure that at the end of the loop,
* ptr is pointing to the last digit. Thus we can avoid using another loop. * ptr is pointing to the last digit. Thus we can avoid using another loop.
**/ */
// ptr = &my_int; // ptr = &my_int;
// /* move ptr to the MSB digit */ // /* move ptr to the MSB digit */
// while (ptr->next_digit) // while (ptr->next_digit)

View File

@ -9,7 +9,7 @@
/** /**
* function to return the sum of proper divisors of N * function to return the sum of proper divisors of N
**/ */
unsigned long sum_of_divisors(unsigned int N) unsigned long sum_of_divisors(unsigned int N)
{ {
unsigned long sum = 1 + N; /* 1 and itself are always a divisor */ unsigned long sum = 1 + N; /* 1 and itself are always a divisor */
@ -40,12 +40,12 @@ int main(int argc, char **argv)
if (argc == 2) if (argc == 2)
MAX_N = atoi(argv[1]); MAX_N = atoi(argv[1]);
/**< /*
* We use an array of flags to check if a number at the index was: * We use an array of flags to check if a number at the index was:
* not-processed = 0 * not-processed = 0
* is amicable = 1 * is amicable = 1
* not amicable = -1 * not amicable = -1
**/ */
char *flags = (char *)calloc(MAX_N, sizeof(char)); char *flags = (char *)calloc(MAX_N, sizeof(char));
clock_t start_time = clock(); clock_t start_time = clock();

View File

@ -16,7 +16,7 @@
/** /**
* Alphabetical sorting using 'shell sort' algorithm * Alphabetical sorting using 'shell sort' algorithm
**/ */
void shell_sort(char data[][MAX_NAME_LEN], int LEN) void shell_sort(char data[][MAX_NAME_LEN], int LEN)
{ {
const int gaps[] = {701, 301, 132, 57, 23, 10, 4, 1}; const int gaps[] = {701, 301, 132, 57, 23, 10, 4, 1};
@ -44,7 +44,7 @@ void shell_sort(char data[][MAX_NAME_LEN], int LEN)
/** /**
* Alphabetical sorting using 'lazy sort' algorithm * Alphabetical sorting using 'lazy sort' algorithm
**/ */
void lazy_sort(char data[][MAX_NAME_LEN], int LEN) void lazy_sort(char data[][MAX_NAME_LEN], int LEN)
{ {
int i, j; int i, j;

View File

@ -17,7 +17,7 @@ unsigned long MAX_N = 28123; /**< upper limit of numbers to check */
* -1 if N is deficient * -1 if N is deficient
* 1 if N is abundant * 1 if N is abundant
* 0 if N is perfect * 0 if N is perfect
**/ */
char get_perfect_number(unsigned long N) char get_perfect_number(unsigned long N)
{ {
unsigned long sum = 1; unsigned long sum = 1;
@ -43,7 +43,7 @@ char get_perfect_number(unsigned long N)
/** /**
* Is the given number an abundant number (1) or not (0) * Is the given number an abundant number (1) or not (0)
**/ */
unsigned long is_abundant(unsigned long N) unsigned long is_abundant(unsigned long N)
{ {
return get_perfect_number(N) == 1 ? 1 : 0; return get_perfect_number(N) == 1 ? 1 : 0;
@ -51,7 +51,7 @@ unsigned long is_abundant(unsigned long N)
/** /**
* Find the next abundant number after N and not including N * Find the next abundant number after N and not including N
**/ */
unsigned long get_next_abundant(unsigned long N) unsigned long get_next_abundant(unsigned long N)
{ {
unsigned long i; unsigned long i;
@ -65,13 +65,13 @@ unsigned long get_next_abundant(unsigned long N)
* of two abundant numbers. * of two abundant numbers.
* \returns 1 - if yes * \returns 1 - if yes
* \returns 0 - if not * \returns 0 - if not
**/ */
char is_sum_of_abundant(unsigned long N) char is_sum_of_abundant(unsigned long N)
{ {
/** optimized logic: /* optimized logic:
* i + j = N where both i and j should be abundant * i + j = N where both i and j should be abundant
* hence we can simply check for j = N - i as we loop through i * hence we can simply check for j = N - i as we loop through i
**/ */
for (unsigned long i = get_next_abundant(1); i <= (N >> 1); for (unsigned long i = get_next_abundant(1); i <= (N >> 1);
i = get_next_abundant(i)) i = get_next_abundant(i))
if (is_abundant(N - i)) if (is_abundant(N - i))

View File

@ -22,14 +22,14 @@ long MAX_N = 28123; /**< Limit of numbers to check */
* Using a whole byte to store a binary info would be redundant. * Using a whole byte to store a binary info would be redundant.
* We will use each byte to represent 8 numbers by relying on bits. * We will use each byte to represent 8 numbers by relying on bits.
* This saves memory required by 1/8 * This saves memory required by 1/8
**/ */
char *abundant_flags = NULL; char *abundant_flags = NULL;
/** /**
* \returns -1 if N is deficient * \returns -1 if N is deficient
* \returns 1 if N is abundant * \returns 1 if N is abundant
* \returns 0 if N is perfect * \returns 0 if N is perfect
**/ */
char get_perfect_number(unsigned long N) char get_perfect_number(unsigned long N)
{ {
unsigned long sum = 1; unsigned long sum = 1;
@ -55,7 +55,7 @@ char get_perfect_number(unsigned long N)
/** /**
* Is the given number an abundant number (1) or not (0) * Is the given number an abundant number (1) or not (0)
**/ */
char is_abundant(unsigned long N) char is_abundant(unsigned long N)
{ {
// return abundant_flags[N >> 3] & (1 << N % 8) ? 1 : 0; // return abundant_flags[N >> 3] & (1 << N % 8) ? 1 : 0;
@ -66,7 +66,7 @@ char is_abundant(unsigned long N)
/** /**
* Find the next abundant number after N and not including N * Find the next abundant number after N and not including N
**/ */
unsigned long get_next_abundant(unsigned long N) unsigned long get_next_abundant(unsigned long N)
{ {
unsigned long i; unsigned long i;
@ -81,13 +81,13 @@ unsigned long get_next_abundant(unsigned long N)
* of two abundant numbers. * of two abundant numbers.
* \returns 1 - if yes * \returns 1 - if yes
* \returns 0 - if not * \returns 0 - if not
**/ */
char is_sum_of_abundant(unsigned long N) char is_sum_of_abundant(unsigned long N)
{ {
/** optimized logic: /* optimized logic:
* i + j = N where both i and j should be abundant * i + j = N where both i and j should be abundant
* hence we can simply check for j = N - i as we loop through i * hence we can simply check for j = N - i as we loop through i
**/ */
for (unsigned long i = get_next_abundant(1); i <= (N >> 1); for (unsigned long i = get_next_abundant(1); i <= (N >> 1);
i = get_next_abundant(i)) i = get_next_abundant(i))
if (is_abundant(N - i)) if (is_abundant(N - i))
@ -107,9 +107,9 @@ int main(int argc, char **argv)
if (argc == 2) if (argc == 2)
MAX_N = strtoul(argv[1], NULL, 10); MAX_N = strtoul(argv[1], NULL, 10);
/** byte array to store flags to identify abundant numbers /* byte array to store flags to identify abundant numbers
* the flags are identified by bits * the flags are identified by bits
**/ */
abundant_flags = (char *)calloc(MAX_N >> 3, 1); abundant_flags = (char *)calloc(MAX_N >> 3, 1);
if (!abundant_flags) if (!abundant_flags)
{ {

View File

@ -15,7 +15,7 @@
/** /**
* Function to add arbitraty length decimal integers stored in an array.\n * Function to add arbitraty length decimal integers stored in an array.\n
* a + b = c = new b * a + b = c = new b
**/ */
unsigned int add_numbers(unsigned char *a, unsigned char *b, unsigned char *c, unsigned int add_numbers(unsigned char *a, unsigned char *b, unsigned char *c,
int N) int N)
{ {

View File

@ -8,8 +8,6 @@
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
#define ARRAY_LEN(x) (sizeof(x) / sizeof((x)[0]))
/** Helper function to print array values */ /** Helper function to print array values */
void show_data(int *arr, long len) void show_data(int *arr, long len)
{ {
@ -29,7 +27,7 @@ inline void swap(int *a, int *b)
/** /**
* Optimized algorithm - takes half the time as other * Optimized algorithm - takes half the time as other
**/ */
void shell_sort(int *array, long LEN) void shell_sort(int *array, long LEN)
{ {
const int gaps[] = {701, 301, 132, 57, 23, 10, 4, 1}; const int gaps[] = {701, 301, 132, 57, 23, 10, 4, 1};