mirror of https://github.com/TheAlgorithms/C
Create fibonacci_formula.c (#961)
This commit is contained in:
parent
7e6276b730
commit
6121ab5c20
|
@ -149,7 +149,7 @@
|
|||
* [Spirograph](https://github.com/TheAlgorithms/C/blob/master/graphics/spirograph.c)
|
||||
|
||||
## Greedy Approach
|
||||
* [Djikstra](https://github.com/TheAlgorithms/C/blob/master/greedy_approach/djikstra.c)
|
||||
* [Dijkstra](https://github.com/TheAlgorithms/C/blob/master/greedy_approach/dijkstra.c)
|
||||
* [Prim](https://github.com/TheAlgorithms/C/blob/master/greedy_approach/prim.c)
|
||||
|
||||
## Hash
|
||||
|
@ -267,6 +267,7 @@
|
|||
* [Fibonacci](https://github.com/TheAlgorithms/C/blob/master/misc/fibonacci.c)
|
||||
* [Fibonacci Dp](https://github.com/TheAlgorithms/C/blob/master/misc/fibonacci_dp.c)
|
||||
* [Fibonacci Fast](https://github.com/TheAlgorithms/C/blob/master/misc/fibonacci_fast.c)
|
||||
* [Fibonacci Formula](https://github.com/TheAlgorithms/C/blob/master/misc/fibonacci_formula.c)
|
||||
* [Gcd](https://github.com/TheAlgorithms/C/blob/master/misc/gcd.c)
|
||||
* [Is Armstrong](https://github.com/TheAlgorithms/C/blob/master/misc/is_armstrong.c)
|
||||
* [Large Factorials](https://github.com/TheAlgorithms/C/blob/master/misc/large_factorials.c)
|
||||
|
|
|
@ -0,0 +1,59 @@
|
|||
/**
|
||||
* @file
|
||||
* @brief Finding Fibonacci number of any `n` number using [Binet's closed form formula](https://en.wikipedia.org/wiki/Fibonacci_number#Binet's_formula)
|
||||
* compute \f$f_{nth}\f$ Fibonacci number using the binet's formula:
|
||||
* Fn = 1√5 * (1+√5 / 2)^n+1 − 1√5 * (1−√5 / 2)^n+1
|
||||
* @author [GrandSir](https://github.com/GrandSir/)
|
||||
*/
|
||||
|
||||
#include <math.h> /// for pow and sqrt
|
||||
#include <stdio.h> /// for printf
|
||||
#include <assert.h> /// for assert
|
||||
|
||||
/**
|
||||
* @param n index of number in Fibonacci sequence
|
||||
* @returns nth value of fibonacci sequence for all n >= 0
|
||||
*/
|
||||
int fib(unsigned int n) {
|
||||
float seq = (1 / sqrt(5) * pow(((1 + sqrt(5)) / 2), n + 1)) - (1 / sqrt(5) * pow(((1 - sqrt(5)) / 2), n + 1));
|
||||
|
||||
// removing unnecessary fractional part by implicitly converting float to int
|
||||
return seq;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test () {
|
||||
/* this ensures that the first 10 number of fibonacci sequence
|
||||
* (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89)
|
||||
* matches with algorithm
|
||||
*/
|
||||
assert(fib(0) == 1);
|
||||
assert(fib(1) == 1);
|
||||
assert(fib(2) == 2);
|
||||
assert(fib(3) == 3);
|
||||
assert(fib(4) == 5);
|
||||
assert(fib(5) == 8);
|
||||
assert(fib(6) == 13);
|
||||
assert(fib(7) == 21);
|
||||
assert(fib(8) == 34);
|
||||
assert(fib(9) == 55);
|
||||
assert(fib(10) == 89);
|
||||
|
||||
printf("All tests have successfully passed!\n");
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test(); // run self-test implementations
|
||||
|
||||
for(int i = 0; i <= 10; i++){
|
||||
printf("%d. fibonacci number is: %d\n", i, fib(i));
|
||||
}
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue