From 5d962a6f5402b34b83c36d4a6121c130a64654d3 Mon Sep 17 00:00:00 2001 From: Luiz Felipe Schulz Coria Date: Wed, 13 Nov 2024 21:22:08 -0300 Subject: [PATCH] Create quadratic_search.c --- searching/quadratic_search.c | 102 +++++++++++++++++++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 searching/quadratic_search.c diff --git a/searching/quadratic_search.c b/searching/quadratic_search.c new file mode 100644 index 00000000..954a98cd --- /dev/null +++ b/searching/quadratic_search.c @@ -0,0 +1,102 @@ +/** + * @file + * @brief Program to perform a "quadratic search" of a target + * value in a given *sorted* array. + * @authors [Your Name] - recursive and iterative algorithms + */ + +#include +#include + +/** Recursive implementation + * \param[in] arr array to search + * \param[in] l left index of search range + * \param[in] r right index of search range + * \param[in] x target value to search for + * \returns location of x assuming array arr[l..r] is present + * \returns -1 otherwise + */ +int quadratic_search_recursive(const int *arr, int l, int r, int x) +{ + if (r >= l) + { + // Calculate "midpoint" using a quadratic function + int mid = l + ((r - l) * (r - l)) / ((r - l + 1) * (r - l + 1)); + + // Check if element is present at the midpoint + if (arr[mid] == x) + return mid; + + // If the element is smaller than arr[mid], search in the left subarray + if (arr[mid] > x) + return quadratic_search_recursive(arr, l, mid - 1, x); + + // Otherwise, search in the right subarray + return quadratic_search_recursive(arr, mid + 1, r, x); + } + + // Element is not present in the array + return -1; +} + +/** Iterative implementation + * \param[in] arr array to search + * \param[in] l left index of search range + * \param[in] r right index of search range + * \param[in] x target value to search for + * \returns location of x assuming array arr[l..r] is present + * \returns -1 otherwise + */ +int quadratic_search_iterative(const int *arr, int l, int r, int x) +{ + while (l <= r) + { + // Calculate "midpoint" using a quadratic function + int mid = l + ((r - l) * (r - l)) / ((r - l + 1) * (r - l + 1)); + + // Check if element is present at the midpoint + if (arr[mid] == x) + return mid; + + // If the element is smaller than arr[mid], search in the left subarray + if (arr[mid] > x) + r = mid - 1; + else // Otherwise, search in the right subarray + l = mid + 1; + } + + // Element is not present in the array + return -1; +} + +/** Test implementations */ +void test() +{ + int arr[] = {2, 3, 4, 10, 40}; + int n = sizeof(arr) / sizeof(arr[0]); + + printf("Test 1.... "); + int x = 10; + int result = quadratic_search_recursive(arr, 0, n - 1, x); + assert(result == 3); + printf("passed recursive... "); + result = quadratic_search_iterative(arr, 0, n - 1, x); + assert(result == 3); + printf("passed iterative...\n"); + + printf("Test 2.... "); + x = 5; + result = quadratic_search_recursive(arr, 0, n - 1, x); + assert(result == -1); + printf("passed recursive... "); + result = quadratic_search_iterative(arr, 0, n - 1, x); + assert(result == -1); + printf("passed iterative...\n"); +} + +/** Main function */ +int main(void) +{ + test(); + return 0; +}