mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-21 21:11:57 +03:00
feat: Exponential Search (#818)
* feat(ExponentialSearch): added C implementation of Exponential Search * fix: typo * refactor(ExponentialSearch): removed unused imports * fix(Exponential Search): review fixes * updating DIRECTORY.md * refactor(ExponentialSearch): refactoring types * fix(ExponentialSearch): fixes and added brief * refactor(ExponentialSearch): added briefs Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
4ac1c65007
commit
4b65a6b6b1
@ -350,6 +350,7 @@
|
||||
|
||||
## Searching
|
||||
* [Binary Search](https://github.com/TheAlgorithms/C/blob/master/searching/binary_search.c)
|
||||
* [Exponential Search](https://github.com/TheAlgorithms/C/blob/master/searching/exponential_search.c)
|
||||
* [Fibonacci Search](https://github.com/TheAlgorithms/C/blob/master/searching/fibonacci_search.c)
|
||||
* [Interpolation Search](https://github.com/TheAlgorithms/C/blob/master/searching/interpolation_search.c)
|
||||
* [Jump Search](https://github.com/TheAlgorithms/C/blob/master/searching/jump_search.c)
|
||||
|
107
searching/exponential_search.c
Normal file
107
searching/exponential_search.c
Normal file
@ -0,0 +1,107 @@
|
||||
/**
|
||||
* \file
|
||||
* \brief [Exponential Search](https://github.com/TheAlgorithms/Algorithms-Explanation/blob/master/en/Search%20Algorithms/Exponential%20Search.md)
|
||||
* \author [Alessio Farinelli](https://github.com/faridevnz)
|
||||
*/
|
||||
#include <assert.h> /// for assert
|
||||
#include <inttypes.h> /// for int64_t, uint16_t
|
||||
|
||||
#define ELEMENT -10
|
||||
|
||||
int64_t binary_search(const int64_t* arr, const uint16_t l_index, const uint16_t r_index, const int64_t n); ///< used to perform the binary search over the given array
|
||||
int64_t exponential_search(const int64_t* arr, const uint16_t length, const int64_t n); ///< used to perform the exponential search over the given array
|
||||
static void test(); ///< used to run the self-test implementations
|
||||
|
||||
/**
|
||||
* Function: exponential_search
|
||||
* \brief algorithm that search the index of the given item
|
||||
* \details recursive function that take an array and quickly find the range
|
||||
* where to apply the binary search algorithm to find the given element
|
||||
* ----------------------------
|
||||
* \param arr array where search the element
|
||||
* \param length the total length of the given array (arr)
|
||||
* \param n element to find in the array (arr)
|
||||
*
|
||||
* \returns the index of the element (n) in the array (arr)
|
||||
* \returns -1 if the element wasn't found
|
||||
*/
|
||||
int64_t exponential_search(const int64_t* arr, const uint16_t length, const int64_t n)
|
||||
{
|
||||
if ( length == 0 ) { return -1; }
|
||||
// find the upperbound
|
||||
uint32_t upper_bound = 1;
|
||||
while ( upper_bound <= length && arr[upper_bound] < n ) { upper_bound = upper_bound * 2; }
|
||||
// calculate the range ( between lower_boud and upper_bound )
|
||||
uint16_t lower_bound = upper_bound/2;
|
||||
if ( upper_bound > length ) { upper_bound = length; }
|
||||
// apply the binary search in the range
|
||||
return binary_search(arr, lower_bound, upper_bound, n);
|
||||
}
|
||||
|
||||
/**
|
||||
* Function: binary_search
|
||||
* \brief algorithm that search the index of the given item
|
||||
* \details recursive function that search the given element in
|
||||
* the array using the [Binary Search](https://github.com/TheAlgorithms/Algorithms-Explanation/blob/master/en/Search%20Algorithms/Binary%20Search.md)
|
||||
* ----------------------------
|
||||
* \param arr array where search the element
|
||||
* \param l_index start index of the array (arr) to apply the algorithm
|
||||
* \param r_index end index of the array (arr) to apply the algorithm
|
||||
* \param n element to find in the array (arr)
|
||||
*
|
||||
* \returns the index of the element (n) in the array (arr)
|
||||
* \returns -1 if the n element wasn't found
|
||||
*/
|
||||
int64_t binary_search(const int64_t* arr, const uint16_t l_index, const uint16_t r_index, const int64_t n)
|
||||
{
|
||||
// calculate the middle index of the array
|
||||
uint16_t middle_index = l_index + ( r_index - l_index ) / 2;
|
||||
// base cases
|
||||
if ( l_index > r_index ) { return -1; }
|
||||
if ( arr[middle_index] == n ) { return middle_index; }
|
||||
// recursion
|
||||
if ( arr[middle_index] > n ) { return binary_search(arr, l_index, middle_index-1, n); } // left
|
||||
return binary_search(arr, middle_index+1, r_index, n); // right
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main()
|
||||
{
|
||||
test(); // run self-test implementations
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations
|
||||
* @returns void
|
||||
*/
|
||||
static void test()
|
||||
{
|
||||
// empty array
|
||||
int64_t arr_empty[] = {};
|
||||
assert(exponential_search(arr_empty, 0, 10) == -1);
|
||||
// elent not found
|
||||
int64_t arr_found[] = {1, 2, 3};
|
||||
assert(exponential_search(arr_found, 3, 10) == -1);
|
||||
// element found in an array of length 1
|
||||
int64_t arr_one[] = {1};
|
||||
assert(exponential_search(arr_found, 1, 1) == 0);
|
||||
// find the first element in an array of length 2
|
||||
int64_t arr_first_2[] = {1, 2};
|
||||
assert(exponential_search(arr_first_2, 2, 1) == 0);
|
||||
// find the last element in an array of length 2
|
||||
int64_t arr_last_2[] = {1, 2};
|
||||
assert(exponential_search(arr_last_2, 2, 2) == 1);
|
||||
// find the first element in an array of length n
|
||||
int64_t arr_first_n[] = {-1, 2, 4, 6, 8};
|
||||
assert(exponential_search(arr_first_n, 5, -1) == 0);
|
||||
// find the last element in an array of length n
|
||||
int64_t arr_last_n[] = {-1, 2, 4, 6, 8};
|
||||
assert(exponential_search(arr_last_n, 5, 8) == 4);
|
||||
// find an element in an array of length n
|
||||
int64_t arr_middle[] = {-1, 2, 4, 6, 8};
|
||||
assert(exponential_search(arr_middle, 5, 6) == 3);
|
||||
}
|
Loading…
Reference in New Issue
Block a user