mirror of https://github.com/TheAlgorithms/C
Merge pull request #105 from koseokkyu/heapsort
Project Euler solving Problem 01
This commit is contained in:
commit
4021a3f8ad
|
@ -0,0 +1,19 @@
|
|||
/*
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
int n = 0;
|
||||
int sum = 0;
|
||||
scanf("%d", &n);
|
||||
for (int a = 0; a < n; a++) {
|
||||
if ((a % 3 == 0) || (a % 5 == 0)) {
|
||||
sum += a;
|
||||
}
|
||||
}
|
||||
|
||||
printf("%d\n", sum);
|
||||
}
|
|
@ -0,0 +1,24 @@
|
|||
/*
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
'''
|
||||
'''
|
||||
This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
int n = 0;
|
||||
int sum = 0;
|
||||
scanf("%d", &n);
|
||||
|
||||
int terms = (n - 1) / 3;
|
||||
sum += ((terms)*(6 + (terms - 1) * 3)) / 2; //sum of an A.P.
|
||||
terms = (n - 1) / 5;
|
||||
sum += ((terms)*(10 + (terms - 1) * 5)) / 2;
|
||||
terms = (n - 1) / 15;
|
||||
sum -= ((terms)*(30 + (terms - 1) * 15)) / 2;
|
||||
|
||||
printf("%d\n", sum);
|
||||
}
|
|
@ -0,0 +1,49 @@
|
|||
/*
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
'''
|
||||
'''
|
||||
This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
int n = 0;
|
||||
int sum = 0;
|
||||
int num = 0;
|
||||
scanf("%d", &n);
|
||||
|
||||
while (1) {
|
||||
num += 3;
|
||||
if (num >= n)
|
||||
break;
|
||||
sum += num;
|
||||
num += 2;
|
||||
if (num >= n)
|
||||
break;
|
||||
sum += num;
|
||||
num += 1;
|
||||
if (num >= n)
|
||||
break;
|
||||
sum += num;
|
||||
num += 3;
|
||||
if (num >= n)
|
||||
break;
|
||||
sum += num;
|
||||
num += 1;
|
||||
if (num >= n)
|
||||
break;
|
||||
sum += num;
|
||||
num += 2;
|
||||
if (num >= n)
|
||||
break;
|
||||
sum += num;
|
||||
num += 3;
|
||||
if (num >= n)
|
||||
break;
|
||||
sum += num;
|
||||
}
|
||||
|
||||
printf("%d\n", sum);
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
/*
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
|
||||
the first 10 terms will be:
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
|
||||
e.g. for n=10, we have {2,8}, sum is 10.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
int n = 0;
|
||||
int sum = 0;
|
||||
int i = 1;
|
||||
int j = 2;
|
||||
int temp;
|
||||
scanf("%d", &n);
|
||||
|
||||
while (j <= n) {
|
||||
if ((j & 1) == 0) //can also use(j%2 == 0)
|
||||
sum += j;
|
||||
temp = i;
|
||||
i = j;
|
||||
j = temp + i;
|
||||
}
|
||||
|
||||
printf("%d\n", sum);
|
||||
}
|
|
@ -0,0 +1,57 @@
|
|||
/*
|
||||
Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
int isprime(int no) {
|
||||
int sq;
|
||||
|
||||
if (no == 2) {
|
||||
return 1;
|
||||
}
|
||||
else if (no%2 == 0) {
|
||||
return 0;
|
||||
}
|
||||
sq = ((int)(sqrt(no))) + 1;
|
||||
for (int i = 3; i < sq; i + 2) {
|
||||
if (no%i == 0) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
int main() {
|
||||
int maxNumber = 0;
|
||||
int n = 0;
|
||||
int n1;
|
||||
scanf("%d", &n);
|
||||
if (isprime(n) == 1)
|
||||
printf("%d", n);
|
||||
else {
|
||||
while (n % 2 == 0) {
|
||||
n = n / 2;
|
||||
}
|
||||
if (isprime(n) == 1) {
|
||||
printf("%d\n", n);
|
||||
}
|
||||
else {
|
||||
n1 = ((int)(sqrt(n))) + 1;
|
||||
for (int i = 3; i < n1; i + 2) {
|
||||
if (n%i == 0) {
|
||||
if (isprime((int)(n / i)) == 1) {
|
||||
maxNumber = n / i;
|
||||
break;
|
||||
}
|
||||
else if (isprime(i) == 1) {
|
||||
maxNumber = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("%d\n", maxNumber);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,23 @@
|
|||
/*
|
||||
Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
|
||||
int main() {
|
||||
int n = 0;
|
||||
scanf("%d", &n);
|
||||
int prime = 1;
|
||||
int i = 2;
|
||||
while (i*i <= n) {
|
||||
while (n%i == 0) {
|
||||
prime = i;
|
||||
n /= i;
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
if (n > 1)
|
||||
prime = n;
|
||||
printf("%d\n", prime);
|
||||
}
|
Loading…
Reference in New Issue