mirror of https://github.com/TheAlgorithms/C
Merge branch 'documentation/fixes'
This commit is contained in:
commit
336af14178
|
@ -16,6 +16,7 @@
|
|||
* \warning MSVC 2019 compiler generates code that does not execute as expected.
|
||||
* However, MinGW, Clang for GCC and Clang for MSVC compilers on windows perform
|
||||
* as expected. Any insights and suggestions should be directed to the author.
|
||||
* \see kohonen_som_trace.c
|
||||
*/
|
||||
#define _USE_MATH_DEFINES /**< required for MS Visual C */
|
||||
#include <math.h>
|
||||
|
@ -27,10 +28,14 @@
|
|||
#endif
|
||||
|
||||
#ifndef max
|
||||
#define max(a, b) (a > b ? a : b) /**< shorthand for maximum value */
|
||||
#define max(a, b) \
|
||||
(((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \
|
||||
*/
|
||||
#endif
|
||||
#ifndef min
|
||||
#define min(a, b) (a < b ? a : b) /**< shorthand for minimum value */
|
||||
#define min(a, b) \
|
||||
(((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \
|
||||
*/
|
||||
#endif
|
||||
|
||||
/** to store info regarding 3D arrays */
|
||||
|
@ -219,6 +224,7 @@ void get_min_2d(double **X, int N, double *val, int *x_idx, int *y_idx)
|
|||
* \param[in] num_features number of features per input sample
|
||||
* \param[in] alpha learning rate \f$0<\alpha\le1\f$
|
||||
* \param[in] R neighborhood range
|
||||
* \returns minimum distance of sample and trained weights
|
||||
*/
|
||||
double update_weights(const double *X, struct array_3d *W, double **D,
|
||||
int num_out, int num_features, double alpha, int R)
|
||||
|
@ -308,7 +314,8 @@ void kohonen_som(double **X, struct array_3d *W, int num_samples,
|
|||
for (int i = 0; i < num_out; i++)
|
||||
D[i] = (double *)malloc(num_out * sizeof(double));
|
||||
|
||||
double dmin = 1.f;
|
||||
double dmin = 1.f; // average minimum distance of all samples
|
||||
|
||||
// Loop alpha from 1 to slpha_min
|
||||
for (double alpha = 1.f; alpha > alpha_min && dmin > 1e-3;
|
||||
alpha -= 0.001, iter++)
|
||||
|
@ -383,19 +390,8 @@ void test_2d_classes(double *const *data, int N)
|
|||
* The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values)
|
||||
* files are created to validate the execution:
|
||||
* * `test1.csv`: random test samples points with a circular pattern
|
||||
* * `w11.csv`: initial random map
|
||||
* * `w12.csv`: trained SOM map
|
||||
*
|
||||
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
||||
* the following snippet
|
||||
* ```gnuplot
|
||||
* set datafile separator ','
|
||||
* plot "test1.csv" title "original", \
|
||||
* "w11.csv" title "w1", \
|
||||
* "w12.csv" title "w2"
|
||||
* ```
|
||||
* ![Sample execution
|
||||
* output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test1.svg)
|
||||
* * `w11.csv`: initial random U-matrix
|
||||
* * `w12.csv`: trained SOM U-matrix
|
||||
*/
|
||||
void test1()
|
||||
{
|
||||
|
@ -493,20 +489,9 @@ void test_3d_classes1(double *const *data, int N)
|
|||
* 3D space and trains an SOM that finds the topological pattern. The following
|
||||
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
|
||||
* to validate the execution:
|
||||
* * `test2.csv`: random test samples points with a lamniscate pattern
|
||||
* * `w21.csv`: initial random map
|
||||
* * `w22.csv`: trained SOM map
|
||||
*
|
||||
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
||||
* the following snippet
|
||||
* ```gnuplot
|
||||
* set datafile separator ','
|
||||
* plot "test2.csv" title "original", \
|
||||
* "w21.csv" title "w1", \
|
||||
* "w22.csv" title "w2"
|
||||
* ```
|
||||
* ![Sample execution
|
||||
* output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test2.svg)
|
||||
* * `test2.csv`: random test samples points
|
||||
* * `w21.csv`: initial random U-matrix
|
||||
* * `w22.csv`: trained SOM U-matrix
|
||||
*/
|
||||
void test2()
|
||||
{
|
||||
|
@ -607,20 +592,9 @@ void test_3d_classes2(double *const *data, int N)
|
|||
* 3D space and trains an SOM that finds the topological pattern. The following
|
||||
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
|
||||
* to validate the execution:
|
||||
* * `test3.csv`: random test samples points with a circular pattern
|
||||
* * `w31.csv`: initial random map
|
||||
* * `w32.csv`: trained SOM map
|
||||
*
|
||||
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
||||
* the following snippet
|
||||
* ```gnuplot
|
||||
* set datafile separator ','
|
||||
* plot "test3.csv" title "original", \
|
||||
* "w31.csv" title "w1", \
|
||||
* "w32.csv" title "w2"
|
||||
* ```
|
||||
* ![Sample execution
|
||||
* output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test3.svg)
|
||||
* * `test3.csv`: random test samples points
|
||||
* * `w31.csv`: initial random U-matrix
|
||||
* * `w32.csv`: trained SOM U-matrix
|
||||
*/
|
||||
void test3()
|
||||
{
|
||||
|
|
|
@ -9,8 +9,9 @@
|
|||
* The algorithm creates a connected network of weights that closely
|
||||
* follows the given data points. This this creates a chain of nodes that
|
||||
* resembles the given input shape.
|
||||
* \see kohonen_som_topology.c
|
||||
*/
|
||||
#define _USE_MATH_DEFINES // required for MS Visual C
|
||||
#define _USE_MATH_DEFINES /**< required for MS Visual C */
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
@ -19,8 +20,14 @@
|
|||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#define max(a, b) (a > b ? a : b) // shorthand for maximum value
|
||||
#define min(a, b) (a < b ? a : b) // shorthand for minimum value
|
||||
#ifndef max
|
||||
#define max(a, b) (((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \
|
||||
*/
|
||||
#endif
|
||||
#ifndef min
|
||||
#define min(a, b) (((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \
|
||||
*/
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Helper function to generate a random number in a given interval.
|
||||
|
|
Loading…
Reference in New Issue