mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-25 06:49:36 +03:00
Merge pull request #524 from kvedala/numerical-methods
Numerical methods
This commit is contained in:
commit
0538404f86
@ -224,6 +224,11 @@
|
||||
* [Tower Of Hanoi](https://github.com/TheAlgorithms/C/blob/master/misc/Tower_Of_Hanoi.c)
|
||||
* [Union Find](https://github.com/TheAlgorithms/C/blob/master/misc/union_Find.c)
|
||||
|
||||
## Numerical Methods
|
||||
* [Durand Kerner Roots](https://github.com/TheAlgorithms/C/blob/master/numerical_methods/durand_kerner_roots.c)
|
||||
* [Qr Decomposition](https://github.com/TheAlgorithms/C/blob/master/numerical_methods/qr_decomposition.c)
|
||||
* [Qr Eigen Values](https://github.com/TheAlgorithms/C/blob/master/numerical_methods/qr_eigen_values.c)
|
||||
|
||||
## Project Euler
|
||||
* Problem 01
|
||||
* [Sol1](https://github.com/TheAlgorithms/C/blob/master/project_euler/Problem%2001/sol1.c)
|
||||
@ -303,4 +308,5 @@
|
||||
* [Selection Sort](https://github.com/TheAlgorithms/C/blob/master/sorting/Selection_Sort.c)
|
||||
* [Shaker Sort](https://github.com/TheAlgorithms/C/blob/master/sorting/shaker_sort.c)
|
||||
* [Shell Sort](https://github.com/TheAlgorithms/C/blob/master/sorting/shell_Sort.c)
|
||||
* [Shell Sort2](https://github.com/TheAlgorithms/C/blob/master/sorting/shell_sort2.c)
|
||||
* [Stooge Sort](https://github.com/TheAlgorithms/C/blob/master/sorting/Stooge_Sort.c)
|
||||
|
@ -4,6 +4,8 @@ C
|
||||
|
||||
For a full list of all algorithms, please see: [DIRECTORY.md](https://github.com/TheAlgorithms/C/blob/master/DIRECTORY.md)
|
||||
|
||||
All the code can be executed and tested online: [![using Google Colab Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/kvedala/27f1b0b6502af935f6917673ec43bcd7/plot-durand_kerner-log.ipynb)
|
||||
|
||||
## LeetCode Algorithm
|
||||
|
||||
- [Solution](https://github.com/TheAlgorithms/C/tree/master/leetcode) for [LeetCode](https://leetcode.com/problemset/all/)
|
||||
|
204
numerical_methods/durand_kerner_roots.c
Normal file
204
numerical_methods/durand_kerner_roots.c
Normal file
@ -0,0 +1,204 @@
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
#include <complex.h>
|
||||
|
||||
/**
|
||||
* Test the algorithm online:
|
||||
* https://gist.github.com/kvedala/27f1b0b6502af935f6917673ec43bcd7
|
||||
**/
|
||||
|
||||
/***
|
||||
* Try the highly unstable Wilkinson's polynomial:
|
||||
* ./numerical_methods/durand_kerner_roots.c 1 -210 20615 -1256850 53327946 -1672280820 40171771630 -756111184500 11310276995381 -135585182899530 1307535010540395 -10142299865511450 63030812099294896 -311333643161390640 1206647803780373360 -3599979517947607200 8037811822645051776 -12870931245150988800 13803759753640704000 -8752948036761600000 2432902008176640000
|
||||
* */
|
||||
|
||||
#define ACCURACY 1e-10
|
||||
|
||||
/**
|
||||
* define polynomial function
|
||||
**/
|
||||
long double complex function(double *coeffs, unsigned int degree, long double complex x)
|
||||
{
|
||||
long double complex out = 0.;
|
||||
unsigned int n;
|
||||
|
||||
for (n = 0; n < degree; n++)
|
||||
out += coeffs[n] * cpow(x, degree - n - 1);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static inline char *complex_str(long double complex x)
|
||||
{
|
||||
static char msg[50];
|
||||
double r = creal(x);
|
||||
double c = cimag(x);
|
||||
|
||||
sprintf(msg, "% 7.04g%+7.04gj", r, c);
|
||||
|
||||
return msg;
|
||||
}
|
||||
|
||||
char check_termination(long double delta)
|
||||
{
|
||||
static long double past_delta = INFINITY;
|
||||
if (fabsl(past_delta - delta) <= ACCURACY || delta < ACCURACY)
|
||||
return 1;
|
||||
past_delta = delta;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/***
|
||||
* the comandline inputs are taken as coeffiecients of a polynomial
|
||||
**/
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
double *coeffs = NULL;
|
||||
long double complex *s0 = NULL;
|
||||
unsigned int degree = 0;
|
||||
unsigned int n, i;
|
||||
|
||||
if (argc < 2)
|
||||
{
|
||||
printf("Please pass the coefficients of the polynomial as commandline arguments.\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
degree = argc - 1; /*< detected polynomial degree */
|
||||
coeffs = (double *)malloc(degree * sizeof(double)); /**< store all input coefficients */
|
||||
s0 = (long double complex *)malloc((degree - 1) * sizeof(long double complex)); /**< number of roots = degree-1 */
|
||||
|
||||
/* initialize random seed: */
|
||||
srand(time(NULL));
|
||||
|
||||
if (!coeffs || !s0)
|
||||
{
|
||||
perror("Unable to allocate memory!");
|
||||
if (coeffs)
|
||||
free(coeffs);
|
||||
if (s0)
|
||||
free(s0);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
/**
|
||||
* store intermediate values to a CSV file
|
||||
**/
|
||||
FILE *log_file = fopen("durand_kerner.log.csv", "wt");
|
||||
if (!log_file)
|
||||
{
|
||||
perror("Unable to create a storage log file!");
|
||||
free(coeffs);
|
||||
free(s0);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
fprintf(log_file, "iter#,");
|
||||
#endif
|
||||
|
||||
printf("Computing the roots for:\n\t");
|
||||
for (n = 0; n < degree; n++)
|
||||
{
|
||||
coeffs[n] = strtod(argv[n + 1], NULL);
|
||||
if (n < degree - 1 && coeffs[n] != 0)
|
||||
printf("(%g) x^%d + ", coeffs[n], degree - n - 1);
|
||||
else if (coeffs[n] != 0)
|
||||
printf("(%g) x^%d = 0\n", coeffs[n], degree - n - 1);
|
||||
|
||||
double tmp;
|
||||
if (n > 0)
|
||||
coeffs[n] /= tmp; /* numerical errors less when the first coefficient is "1" */
|
||||
else
|
||||
{
|
||||
tmp = coeffs[0];
|
||||
coeffs[0] = 1;
|
||||
}
|
||||
|
||||
/* initialize root approximations with random values */
|
||||
if (n < degree - 1)
|
||||
{
|
||||
s0[n] = (long double)rand() + (long double)rand() * I;
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
fprintf(log_file, "root_%d,", n);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
fprintf(log_file, "avg. correction");
|
||||
fprintf(log_file, "\n0,");
|
||||
for (n = 0; n < degree - 1; n++)
|
||||
fprintf(log_file, "%s,", complex_str(s0[n]));
|
||||
#endif
|
||||
|
||||
double tol_condition = 1;
|
||||
unsigned long iter = 0;
|
||||
|
||||
while (!check_termination(tol_condition) && iter < INT_MAX)
|
||||
{
|
||||
long double complex delta = 0;
|
||||
tol_condition = 0;
|
||||
iter++;
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
fprintf(log_file, "\n%ld,", iter);
|
||||
#endif
|
||||
|
||||
for (n = 0; n < degree - 1; n++)
|
||||
{
|
||||
long double complex numerator = function(coeffs, degree, s0[n]);
|
||||
long double complex denominator = 1.0;
|
||||
for (i = 0; i < degree - 1; i++)
|
||||
if (i != n)
|
||||
denominator *= s0[n] - s0[i];
|
||||
|
||||
delta = numerator / denominator;
|
||||
|
||||
if (isnan(cabsl(delta)) || isinf(cabsl(delta)))
|
||||
{
|
||||
printf("\n\nOverflow/underrun error - got value = %Lg", cabsl(delta));
|
||||
goto end;
|
||||
}
|
||||
|
||||
s0[n] -= delta;
|
||||
|
||||
tol_condition = fmaxl(tol_condition, fabsl(cabsl(delta)));
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
fprintf(log_file, "%s,", complex_str(s0[n]));
|
||||
#endif
|
||||
}
|
||||
// tol_condition /= (degree - 1);
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
if (iter % 500 == 0)
|
||||
{
|
||||
printf("Iter: %lu\t", iter);
|
||||
for (n = 0; n < degree - 1; n++)
|
||||
printf("\t%s", complex_str(s0[n]));
|
||||
printf("\t\tabsolute average change: %.4g\n", tol_condition);
|
||||
}
|
||||
|
||||
fprintf(log_file, "%.4g", tol_condition);
|
||||
#endif
|
||||
}
|
||||
end:
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
fclose(log_file);
|
||||
#endif
|
||||
|
||||
printf("\nIterations: %lu\n", iter);
|
||||
for (n = 0; n < degree - 1; n++)
|
||||
printf("\t%s\n", complex_str(s0[n]));
|
||||
printf("absolute average change: %.4g\n", tol_condition);
|
||||
|
||||
free(coeffs);
|
||||
free(s0);
|
||||
|
||||
return 0;
|
||||
}
|
153
numerical_methods/qr_decomposition.c
Normal file
153
numerical_methods/qr_decomposition.c
Normal file
@ -0,0 +1,153 @@
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define ROWS 4
|
||||
#define COLUMNS 3
|
||||
|
||||
double A[ROWS][COLUMNS] = {
|
||||
{1, 2, 3},
|
||||
{3, 6, 5},
|
||||
{5, 2, 8},
|
||||
{8, 9, 3}};
|
||||
|
||||
void print_matrix(double A[][COLUMNS], int M, int N)
|
||||
{
|
||||
for (int row = 0; row < M; row++)
|
||||
{
|
||||
for (int col = 0; col < N; col++)
|
||||
printf("% 9.3g\t", A[row][col]);
|
||||
putchar('\n');
|
||||
}
|
||||
putchar('\n');
|
||||
}
|
||||
|
||||
void print_2d(double **A, int M, int N)
|
||||
{
|
||||
for (int row = 0; row < M; row++)
|
||||
{
|
||||
for (int col = 0; col < N; col++)
|
||||
printf("% 9.3g\t", A[row][col]);
|
||||
putchar('\n');
|
||||
}
|
||||
putchar('\n');
|
||||
}
|
||||
|
||||
double vector_dot(double *a, double *b, int L)
|
||||
{
|
||||
double mag = 0.f;
|
||||
for (int i = 0; i < L; i++)
|
||||
mag += a[i] * b[i];
|
||||
|
||||
return mag;
|
||||
}
|
||||
|
||||
double vector_mag(double *vector, int L)
|
||||
{
|
||||
double dot = vector_dot(vector, vector, L);
|
||||
return sqrt(dot);
|
||||
}
|
||||
|
||||
double *vector_proj(double *a, double *b, double *out, int L)
|
||||
{
|
||||
double num = vector_dot(a, b, L);
|
||||
double deno = vector_dot(b, b, L);
|
||||
for (int i = 0; i < L; i++)
|
||||
out[i] = num * b[i] / deno;
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
double *vector_sub(double *a, double *b, double *out, int L)
|
||||
{
|
||||
for (int i = 0; i < L; i++)
|
||||
out[i] = a[i] - b[i];
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void qr_decompose(double A[][COLUMNS], double **Q, double **R, int M, int N)
|
||||
{
|
||||
double *col_vector = (double *)malloc(M * sizeof(double));
|
||||
double *col_vector2 = (double *)malloc(M * sizeof(double));
|
||||
double *tmp_vector = (double *)malloc(M * sizeof(double));
|
||||
for (int i = 0; i < N; i++) /* for each column => R is a square matrix of NxN */
|
||||
{
|
||||
for (int j = 0; j < i; j++) /* second dimension of column */
|
||||
R[i][j] = 0.; /* make R upper triangular */
|
||||
|
||||
/* get corresponding Q vector */
|
||||
for (int j = 0; j < M; j++)
|
||||
{
|
||||
tmp_vector[j] = A[j][i]; /* accumulator for uk */
|
||||
col_vector[j] = A[j][i];
|
||||
}
|
||||
for (int j = 0; j < i; j++)
|
||||
{
|
||||
for (int k = 0; k < M; k++)
|
||||
col_vector2[k] = Q[k][j];
|
||||
vector_proj(col_vector, col_vector2, col_vector2, M);
|
||||
vector_sub(tmp_vector, col_vector2, tmp_vector, M);
|
||||
}
|
||||
double mag = vector_mag(tmp_vector, M);
|
||||
for (int j = 0; j < M; j++)
|
||||
Q[j][i] = tmp_vector[j] / mag;
|
||||
|
||||
/* compute upper triangular values of R */
|
||||
for (int kk = 0; kk < M; kk++)
|
||||
col_vector[kk] = Q[kk][i];
|
||||
for (int k = i; k < N; k++)
|
||||
{
|
||||
for (int kk = 0; kk < M; kk++)
|
||||
col_vector2[kk] = A[kk][k];
|
||||
R[i][k] = vector_dot(col_vector, col_vector2, M);
|
||||
}
|
||||
}
|
||||
|
||||
free(col_vector);
|
||||
free(col_vector2);
|
||||
free(tmp_vector);
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{
|
||||
// double A[][COLUMNS] = {
|
||||
// {1, -1, 4},
|
||||
// {1, 4, -2},
|
||||
// {1, 4, 2},
|
||||
// {1, -1, 0}};
|
||||
|
||||
print_matrix(A, ROWS, COLUMNS);
|
||||
|
||||
double **R = (double **)malloc(sizeof(double) * COLUMNS * COLUMNS);
|
||||
double **Q = (double **)malloc(sizeof(double) * ROWS * COLUMNS);
|
||||
if (!Q || !R)
|
||||
{
|
||||
perror("Unable to allocate memory for Q & R!");
|
||||
return -1;
|
||||
}
|
||||
for (int i = 0; i < ROWS; i++)
|
||||
{
|
||||
R[i] = (double *)malloc(sizeof(double) * COLUMNS);
|
||||
Q[i] = (double *)malloc(sizeof(double) * COLUMNS);
|
||||
if (!Q[i] || !R[i])
|
||||
{
|
||||
perror("Unable to allocate memory for Q & R.");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
qr_decompose(A, Q, R, ROWS, COLUMNS);
|
||||
|
||||
print_2d(R, ROWS, COLUMNS);
|
||||
print_2d(Q, ROWS, COLUMNS);
|
||||
|
||||
for (int i = 0; i < ROWS; i++)
|
||||
{
|
||||
free(R[i]);
|
||||
free(Q[i]);
|
||||
}
|
||||
free(R);
|
||||
free(Q);
|
||||
return 0;
|
||||
}
|
222
numerical_methods/qr_eigen_values.c
Normal file
222
numerical_methods/qr_eigen_values.c
Normal file
@ -0,0 +1,222 @@
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
#define LIMS 9
|
||||
|
||||
void create_matrix(double **A, int N)
|
||||
{
|
||||
int i, j, tmp, lim2 = LIMS >> 1;
|
||||
srand(time(NULL));
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
{
|
||||
A[i][i] = (rand() % LIMS) - lim2;
|
||||
for (j = i + 1; j < N; j++)
|
||||
{
|
||||
tmp = (rand() % LIMS) - lim2;
|
||||
A[i][j] = tmp;
|
||||
A[j][i] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void print_matrix(double **A, int M, int N)
|
||||
{
|
||||
for (int row = 0; row < M; row++)
|
||||
{
|
||||
for (int col = 0; col < N; col++)
|
||||
printf("% 9.3g\t", A[row][col]);
|
||||
putchar('\n');
|
||||
}
|
||||
putchar('\n');
|
||||
}
|
||||
|
||||
double vector_dot(double *a, double *b, int L)
|
||||
{
|
||||
double mag = 0.f;
|
||||
for (int i = 0; i < L; i++)
|
||||
mag += a[i] * b[i];
|
||||
|
||||
return mag;
|
||||
}
|
||||
|
||||
double vector_mag(double *vector, int L)
|
||||
{
|
||||
double dot = vector_dot(vector, vector, L);
|
||||
return sqrt(dot);
|
||||
}
|
||||
|
||||
double *vector_proj(double *a, double *b, double *out, int L)
|
||||
{
|
||||
double num = vector_dot(a, b, L);
|
||||
double deno = vector_dot(b, b, L);
|
||||
for (int i = 0; i < L; i++)
|
||||
out[i] = num * b[i] / deno;
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
double *vector_sub(double *a, double *b, double *out, int L)
|
||||
{
|
||||
for (int i = 0; i < L; i++)
|
||||
out[i] = a[i] - b[i];
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void qr_decompose(double **A, double **Q, double **R, int M, int N)
|
||||
{
|
||||
double *col_vector = (double *)malloc(M * sizeof(double));
|
||||
double *col_vector2 = (double *)malloc(M * sizeof(double));
|
||||
double *tmp_vector = (double *)malloc(M * sizeof(double));
|
||||
for (int i = 0; i < N; i++) /* for each column => R is a square matrix of NxN */
|
||||
{
|
||||
for (int j = 0; j < i; j++) /* second dimension of column */
|
||||
R[i][j] = 0.; /* make R upper triangular */
|
||||
|
||||
/* get corresponding Q vector */
|
||||
for (int j = 0; j < M; j++)
|
||||
{
|
||||
tmp_vector[j] = A[j][i]; /* accumulator for uk */
|
||||
col_vector[j] = A[j][i];
|
||||
}
|
||||
for (int j = 0; j < i; j++)
|
||||
{
|
||||
for (int k = 0; k < M; k++)
|
||||
col_vector2[k] = Q[k][j];
|
||||
vector_proj(col_vector, col_vector2, col_vector2, M);
|
||||
vector_sub(tmp_vector, col_vector2, tmp_vector, M);
|
||||
}
|
||||
double mag = vector_mag(tmp_vector, M);
|
||||
for (int j = 0; j < M; j++)
|
||||
Q[j][i] = tmp_vector[j] / mag;
|
||||
|
||||
/* compute upper triangular values of R */
|
||||
for (int kk = 0; kk < M; kk++)
|
||||
col_vector[kk] = Q[kk][i];
|
||||
for (int k = i; k < N; k++)
|
||||
{
|
||||
for (int kk = 0; kk < M; kk++)
|
||||
col_vector2[kk] = A[kk][k];
|
||||
R[i][k] = vector_dot(col_vector, col_vector2, M);
|
||||
}
|
||||
}
|
||||
|
||||
free(col_vector);
|
||||
free(col_vector2);
|
||||
free(tmp_vector);
|
||||
}
|
||||
|
||||
double **mat_mul(double **A, double **B, double **OUT, int R1, int C1, int R2, int C2)
|
||||
{
|
||||
if (C1 != R2)
|
||||
{
|
||||
perror("Matrix dimensions mismatch!");
|
||||
return OUT;
|
||||
}
|
||||
for (int i = 0; i < R1; i++)
|
||||
for (int j = 0; j < C2; j++)
|
||||
{
|
||||
OUT[i][j] = 0.f;
|
||||
for (int k = 0; k < C1; k++)
|
||||
OUT[i][j] += A[i][k] * B[k][j];
|
||||
}
|
||||
return OUT;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int mat_size = 5;
|
||||
if (argc == 2)
|
||||
mat_size = atoi(argv[1]);
|
||||
|
||||
if (mat_size < 2)
|
||||
{
|
||||
fprintf(stderr, "Matrix size should be > 2\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
int i, rows = mat_size, columns = mat_size;
|
||||
|
||||
double **A = (double **)malloc(sizeof(double) * mat_size);
|
||||
double **R = (double **)malloc(sizeof(double) * mat_size);
|
||||
double **Q = (double **)malloc(sizeof(double) * mat_size);
|
||||
double *eigen_vals = (double *)malloc(sizeof(double) * mat_size);
|
||||
if (!Q || !R || !eigen_vals)
|
||||
{
|
||||
perror("Unable to allocate memory for Q & R!");
|
||||
return -1;
|
||||
}
|
||||
for (i = 0; i < mat_size; i++)
|
||||
{
|
||||
A[i] = (double *)malloc(sizeof(double) * mat_size);
|
||||
R[i] = (double *)malloc(sizeof(double) * mat_size);
|
||||
Q[i] = (double *)malloc(sizeof(double) * mat_size);
|
||||
if (!Q[i] || !R[i])
|
||||
{
|
||||
perror("Unable to allocate memory for Q & R.");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
create_matrix(A, mat_size);
|
||||
|
||||
print_matrix(A, mat_size, mat_size);
|
||||
|
||||
int counter = 0, num_eigs = rows - 1;
|
||||
double last_eig = 0;
|
||||
|
||||
while (num_eigs > 0)
|
||||
{
|
||||
while (fabs(A[num_eigs][num_eigs - 1]) > 1e-10)
|
||||
{
|
||||
last_eig = A[num_eigs][num_eigs];
|
||||
for (int i = 0; i < rows; i++)
|
||||
A[i][i] -= last_eig; /* A - cI */
|
||||
qr_decompose(A, Q, R, rows, columns);
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
print_matrix(A, rows, columns);
|
||||
print_matrix(Q, rows, columns);
|
||||
print_matrix(R, columns, columns);
|
||||
printf("-------------------- %d ---------------------\n", ++counter);
|
||||
#endif
|
||||
mat_mul(R, Q, A, columns, columns, rows, columns);
|
||||
for (int i = 0; i < rows; i++)
|
||||
A[i][i] += last_eig; /* A + cI */
|
||||
}
|
||||
|
||||
eigen_vals[num_eigs] = A[num_eigs][num_eigs];
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
printf("========================\n");
|
||||
printf("Eigen value: % g,\n", last_eig);
|
||||
printf("========================\n");
|
||||
#endif
|
||||
num_eigs--;
|
||||
rows--;
|
||||
columns--;
|
||||
}
|
||||
eigen_vals[0] = A[0][0];
|
||||
|
||||
#if defined(DEBUG) || !defined(NDEBUG)
|
||||
print_matrix(R, mat_size, mat_size);
|
||||
print_matrix(Q, mat_size, mat_size);
|
||||
#endif
|
||||
printf("Eigen vals: ");
|
||||
for (i = 0; i < mat_size; i++)
|
||||
printf("% 9.4g\t", eigen_vals[i]);
|
||||
|
||||
for (int i = 0; i < mat_size; i++)
|
||||
{
|
||||
free(A[i]);
|
||||
free(R[i]);
|
||||
free(Q[i]);
|
||||
}
|
||||
free(A);
|
||||
free(R);
|
||||
free(Q);
|
||||
free(eigen_vals);
|
||||
return 0;
|
||||
}
|
78
sorting/shell_sort2.c
Normal file
78
sorting/shell_sort2.c
Normal file
@ -0,0 +1,78 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
#define ELEMENT_NR 20000
|
||||
#define ARRAY_LEN(x) (sizeof(x) / sizeof((x)[0]))
|
||||
|
||||
void show_data(int arr[], int len)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < len; i++)
|
||||
printf("%3d ", arr[i]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void swap(int *a, int *b)
|
||||
{
|
||||
int tmp;
|
||||
|
||||
tmp = *a;
|
||||
*a = *b;
|
||||
*b = tmp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Optimized algorithm - takes half the time as other
|
||||
**/
|
||||
void shell_sort(int array[], int LEN)
|
||||
{
|
||||
const int gaps[] = {701, 301, 132, 57, 23, 10, 4, 1};
|
||||
const int gap_len = 8;
|
||||
int i, j, g;
|
||||
|
||||
for (g = 0; g < gap_len; g++)
|
||||
{
|
||||
int gap = gaps[g];
|
||||
for (i = gap; i < LEN; i++)
|
||||
{
|
||||
int tmp = array[i];
|
||||
|
||||
for (j = i; j >= gap && (array[j - gap] - tmp) > 0; j -= gap)
|
||||
array[j] = array[j - gap];
|
||||
array[j] = tmp;
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG
|
||||
for (i = 0; i < LEN; i++)
|
||||
printf("%s\t", data[i]);
|
||||
#endif
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int i;
|
||||
int array[ELEMENT_NR];
|
||||
int range = 500;
|
||||
int size;
|
||||
double time_spent;
|
||||
|
||||
srand(time(NULL));
|
||||
for (i = 0; i < ELEMENT_NR; i++)
|
||||
array[i] = rand() % range + 1;
|
||||
|
||||
size = ARRAY_LEN(array);
|
||||
|
||||
show_data(array, size);
|
||||
clock_t t1 = clock();
|
||||
shell_sort(array, size);
|
||||
clock_t t2 = clock();
|
||||
|
||||
printf("Data Sorted\n");
|
||||
show_data(array, size);
|
||||
|
||||
printf("Time spent sorting: %.4g s\n", (t2 - t1) / CLOCKS_PER_SEC);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user