TheAlgorithms-C/numerical_methods/durand_kerner_roots.c

182 lines
4.3 KiB
C
Raw Normal View History

#include <math.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <complex.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#define ACCURACY 1e-10
/**
* define polynomial function
**/
double complex function(double *coeffs, unsigned int degree, double complex x)
{
double complex out = 0.;
unsigned int n;
#ifdef _OPENMP
#pragma omp parallel for reduction(+ \
: out)
#endif
for (n = 0; n < degree; n++)
out += coeffs[n] * cpow(x, degree - n - 1);
return out;
}
const char *complex_str(double complex x)
{
static char msg[50];
double r = creal(x);
double c = cimag(x);
sprintf(msg, "%.04g%c%.04gi", r, c >= 0 ? '+' : '-', c >= 0 ? c : -c);
return msg;
}
double get_rand()
{
const double max = 10, min = -10;
return (double)rand() / (double)RAND_MAX * (max - min + 1);
}
/***
* the comandline inputs are taken as coeffiecients of a polynomial
**/
int main(int argc, char **argv)
{
double *coeffs = NULL;
double complex *s0 = NULL;
unsigned int degree = 0;
unsigned int n, i;
if (argc < 2)
{
printf("Please pass the coefficients of the polynomial as commandline arguments.\n");
return 0;
}
degree = argc - 1; /*< detected polynomial degree */
coeffs = (double *)malloc(degree * sizeof(double)); /**< store all input coefficients */
s0 = (double complex *)malloc((degree - 1) * sizeof(double complex)); /**< number of roots = degree-1 */
/* initialize random seed: */
srand(time(NULL));
if (!coeffs || !s0)
{
perror("Unable to allocate memory!");
if (coeffs)
free(coeffs);
if (s0)
free(s0);
return EXIT_FAILURE;
}
#if defined(DEBUG) || !defined(NDEBUG)
/**
* store intermediate values to a CSV file
**/
FILE *log_file = fopen("durand_kerner.log.csv", "wt");
if (!log_file)
{
perror("Unable to create a storage log file!");
free(coeffs);
free(s0);
return EXIT_FAILURE;
}
fprintf(log_file, "iter#,");
#endif
printf("Computing the roots for:\n\t");
for (n = 0; n < degree; n++)
{
coeffs[n] = strtod(argv[n + 1], NULL);
2020-04-09 07:19:42 +03:00
if (n < degree - 1 && coeffs[n] != 0)
printf("(%g) x^%d + ", coeffs[n], degree - n - 1);
2020-04-09 07:19:42 +03:00
else if (coeffs[n] != 0)
printf("(%g) x^%d = 0\n", coeffs[n], degree - n - 1);
/* initialize root approximations with random values */
if (n < degree - 1)
{
s0[n] = get_rand() + get_rand() * I;
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "root_%d,", n);
#endif
}
}
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "avg. correction");
fprintf(log_file, "0,");
for (n = 0; n < degree - 1; n++)
fprintf(log_file, "%s,", complex_str(s0[n]));
#endif
double tol_condition = 1;
unsigned long iter = 0;
while (tol_condition > ACCURACY && iter < ULONG_MAX)
{
double complex delta = 0;
tol_condition = 0;
iter++;
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "\n%ld,", iter);
#endif
for (n = 0; n < degree - 1; n++)
{
double complex numerator = function(coeffs, degree, s0[n]);
double complex denominator = 1.0;
for (i = 0; i < degree - 1; i++)
if (i != n)
denominator *= s0[n] - s0[i];
if (cabs(denominator) == 0)
{
printf("denominatpr = 0\n");
goto end;
}
delta = numerator / denominator;
s0[n] -= delta;
tol_condition += fabs(cabs(delta));
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "%s,", complex_str(s0[n]));
#endif
}
tol_condition /= (degree - 1);
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "%.4g", tol_condition);
#endif
}
end:
#if defined(DEBUG) || !defined(NDEBUG)
fclose(log_file);
#endif
printf("Iterations: %lu\n", iter);
for (n = 0; n < degree - 1; n++)
printf("\t%s\n", complex_str(s0[n]));
printf("absolute average change: %.4g\n", tol_condition);
free(coeffs);
free(s0);
return 0;
}