2017-10-14 09:31:40 +03:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
/* A basic unbalanced binary search tree implementation in C, with the following functionalities implemented:
|
|
|
|
- Insertion
|
|
|
|
- Deletion
|
|
|
|
- Search by key value
|
|
|
|
- Listing of node keys in order of value (from left to right)
|
|
|
|
*/
|
2018-03-18 23:49:50 +03:00
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// Node, the basic data structure in the tree
|
2017-10-14 09:31:40 +03:00
|
|
|
typedef struct node{
|
2018-03-18 23:49:50 +03:00
|
|
|
|
|
|
|
// left child
|
2017-10-14 09:31:40 +03:00
|
|
|
struct node* left;
|
2018-03-18 23:49:50 +03:00
|
|
|
|
|
|
|
// right child
|
2017-10-14 09:31:40 +03:00
|
|
|
struct node* right;
|
2018-03-18 23:49:50 +03:00
|
|
|
|
|
|
|
// data of the node
|
2017-10-14 09:31:40 +03:00
|
|
|
int data;
|
|
|
|
} node;
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// The node constructor, which receives the key value input and returns a node pointer
|
2017-10-14 09:31:40 +03:00
|
|
|
node* newNode(int data){
|
2018-03-18 23:49:50 +03:00
|
|
|
|
|
|
|
// creates a slug
|
2017-10-14 09:31:40 +03:00
|
|
|
node* tmp = (node*)malloc(sizeof(node));
|
2018-03-18 23:49:50 +03:00
|
|
|
|
|
|
|
// initializes the slug
|
2017-10-14 09:31:40 +03:00
|
|
|
tmp->data = data;
|
|
|
|
tmp->left = NULL;
|
|
|
|
tmp->right = NULL;
|
|
|
|
|
|
|
|
return tmp;
|
|
|
|
}
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// Insertion procedure, which inserts the input key in a new node in the tree
|
2017-10-14 09:31:40 +03:00
|
|
|
node* insert(node* root, int data){
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the root of the subtree is null, insert key here
|
2017-10-14 09:31:40 +03:00
|
|
|
if (root == NULL)
|
|
|
|
root = newNode(data);
|
2017-12-27 17:01:50 +03:00
|
|
|
// If it isn't null and the input key is greater than the root key, insert in the right leaf
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (data > root->data)
|
|
|
|
root->right = insert(root->right, data);
|
2017-12-27 17:01:50 +03:00
|
|
|
// If it isn't null and the input key is lower than the root key, insert in the left leaf
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (data < root->data)
|
|
|
|
root->left = insert(root->left, data);
|
2017-12-27 17:01:50 +03:00
|
|
|
// Returns the modified tree
|
2017-10-14 09:31:40 +03:00
|
|
|
return root;
|
|
|
|
}
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// Utilitary procedure to find the greatest key in the left subtree
|
2017-10-14 09:31:40 +03:00
|
|
|
node* getMax(node* root){
|
2017-12-27 17:01:50 +03:00
|
|
|
// If there's no leaf to the right, then this is the maximum key value
|
2017-10-14 09:31:40 +03:00
|
|
|
if (root->right == NULL)
|
|
|
|
return root;
|
|
|
|
else
|
|
|
|
root->right = getMax(root->right);
|
|
|
|
}
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// Deletion procedure, which searches for the input key in the tree and removes it if present
|
2017-10-14 09:31:40 +03:00
|
|
|
node* delete(node* root, int data){
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the root is null, nothing to be done
|
2018-03-18 23:49:50 +03:00
|
|
|
if (root == NULL)
|
2017-10-14 09:31:40 +03:00
|
|
|
return root;
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the input key is greater than the root's, search in the right subtree
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (data > root->data)
|
|
|
|
root->right = delete(root->right, data);
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the input key is lower than the root's, search in the left subtree
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (data < root->data)
|
|
|
|
root->left = delete(root->left, data);
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the input key matches the root's, check the following cases
|
2018-03-18 23:49:50 +03:00
|
|
|
// termination condition
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (data == root->data){
|
2017-12-27 17:01:50 +03:00
|
|
|
// Case 1: the root has no leaves, remove the node
|
2017-10-14 09:31:40 +03:00
|
|
|
if ((root->left == NULL) && (root->right == NULL)){
|
|
|
|
free(root);
|
|
|
|
return NULL;
|
|
|
|
}
|
2017-12-27 17:01:50 +03:00
|
|
|
// Case 2: the root has one leaf, make the leaf the new root and remove the old root
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (root->left == NULL){
|
2017-12-27 17:01:50 +03:00
|
|
|
node* tmp = root;
|
|
|
|
root = root->right;
|
|
|
|
free(tmp);
|
|
|
|
return root;
|
2017-10-14 09:31:40 +03:00
|
|
|
}
|
|
|
|
else if (root->right == NULL){
|
2017-12-27 17:01:50 +03:00
|
|
|
node* tmp = root;
|
|
|
|
root = root->left;
|
|
|
|
free(tmp);
|
|
|
|
return root;
|
2017-10-14 09:31:40 +03:00
|
|
|
}
|
2017-12-27 17:01:50 +03:00
|
|
|
// Case 3: the root has 2 leaves, find the greatest key in the left subtree and switch with the root's
|
2017-10-14 09:31:40 +03:00
|
|
|
else {
|
2018-03-18 23:49:50 +03:00
|
|
|
|
|
|
|
// finds the biggest node in the left branch.
|
2017-10-14 09:31:40 +03:00
|
|
|
node* tmp = getMax(root->left);
|
2018-03-18 23:49:50 +03:00
|
|
|
|
|
|
|
// sets the data of this node equal to the data of the biggest node (lefts)
|
2017-10-14 09:31:40 +03:00
|
|
|
root->data = tmp->data;
|
|
|
|
root->left = delete(root->left, tmp->data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return root;
|
|
|
|
}
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// Search procedure, which looks for the input key in the tree and returns 1 if it's present or 0 if it's not in the tree
|
2017-10-14 09:31:40 +03:00
|
|
|
int find(node* root, int data){
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the root is null, the key's not present
|
2017-10-14 09:31:40 +03:00
|
|
|
if (root == NULL)
|
|
|
|
return 0;
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the input key is greater than the root's, search in the right subtree
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (data > root->data)
|
|
|
|
return find(root->right, data);
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the input key is lower than the root's, search in the left subtree
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (data < root->data)
|
|
|
|
return find(root->left, data);
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the input and the root key match, return 1
|
2017-10-14 09:31:40 +03:00
|
|
|
else if (data == root->data)
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// Utilitary procedure to measure the height of the binary tree
|
2017-10-14 09:31:40 +03:00
|
|
|
int height(node* root){
|
2017-12-27 17:01:50 +03:00
|
|
|
// If the root is null, this is the bottom of the tree (height 0)
|
2017-10-14 09:31:40 +03:00
|
|
|
if (root == NULL)
|
|
|
|
return 0;
|
|
|
|
else{
|
2017-12-27 17:01:50 +03:00
|
|
|
// Get the height from both left and right subtrees to check which is the greatest
|
2017-10-14 09:31:40 +03:00
|
|
|
int right_h = height(root->right);
|
|
|
|
int left_h = height(root->left);
|
2018-03-18 23:49:50 +03:00
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// The final height is the height of the greatest subtree(left or right) plus 1(which is the root's level)
|
2017-10-14 09:31:40 +03:00
|
|
|
if (right_h > left_h)
|
|
|
|
return (right_h + 1);
|
|
|
|
else
|
|
|
|
return (left_h + 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// Utilitary procedure to free all nodes in a tree
|
2017-10-14 09:31:40 +03:00
|
|
|
void purge(node* root){
|
|
|
|
if (root != NULL){
|
|
|
|
if (root->left != NULL)
|
|
|
|
purge(root->left);
|
|
|
|
if (root->right != NULL)
|
|
|
|
purge(root->right);
|
|
|
|
free(root);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-12-27 17:01:50 +03:00
|
|
|
// Traversal procedure to list the current keys in the tree in order of value (from the left to the right)
|
2017-10-14 09:31:40 +03:00
|
|
|
void inOrder(node* root){
|
|
|
|
if(root != NULL){
|
|
|
|
inOrder(root->left);
|
|
|
|
printf("\t[ %d ]\t", root->data);
|
|
|
|
inOrder(root->right);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void main(){
|
2018-03-18 23:49:50 +03:00
|
|
|
|
|
|
|
// this reference don't change.
|
|
|
|
// only the tree changes.
|
2017-10-14 09:31:40 +03:00
|
|
|
node* root = NULL;
|
2018-03-18 23:49:50 +03:00
|
|
|
int opt = -1;
|
|
|
|
int data = 0;
|
2017-10-14 09:31:40 +03:00
|
|
|
|
2018-03-18 23:49:50 +03:00
|
|
|
// event-loop.
|
2017-10-14 09:31:40 +03:00
|
|
|
while (opt != 0){
|
|
|
|
printf("\n\n[1] Insert Node\n[2] Delete Node\n[3] Find a Node\n[4] Get current Height\n[5] Print Tree in Crescent Order\n[0] Quit\n");
|
2018-03-18 23:49:50 +03:00
|
|
|
scanf("%d",&opt); // reads the choice of the user
|
2017-10-14 09:31:40 +03:00
|
|
|
|
2018-03-18 23:49:50 +03:00
|
|
|
// processes the choice
|
2017-10-14 09:31:40 +03:00
|
|
|
switch(opt){
|
|
|
|
case 1: printf("Enter the new node's value:\n");
|
|
|
|
scanf("%d",&data);
|
|
|
|
root = insert(root,data);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 2: printf("Enter the value to be removed:\n");
|
|
|
|
if (root != NULL){
|
|
|
|
scanf("%d",&data);
|
|
|
|
root = delete(root,data);
|
|
|
|
}
|
2018-03-18 23:49:50 +03:00
|
|
|
else
|
2017-10-14 09:31:40 +03:00
|
|
|
printf("Tree is already empty!\n");
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 3: printf("Enter the searched value:\n");
|
|
|
|
scanf("%d",&data);
|
|
|
|
find(root,data) ? printf("The value is in the tree.\n") : printf("The value is not in the tree.\n");
|
|
|
|
break;
|
2018-03-18 23:49:50 +03:00
|
|
|
|
2017-10-14 09:31:40 +03:00
|
|
|
case 4: printf("Current height of the tree is: %d\n", height(root));
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 5: inOrder(root);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-03-18 23:49:50 +03:00
|
|
|
// deletes the tree from the heap.
|
2017-10-14 09:31:40 +03:00
|
|
|
purge(root);
|
|
|
|
}
|