mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-22 21:41:59 +03:00
76 lines
1.5 KiB
C
76 lines
1.5 KiB
C
|
/**
|
||
|
@file Fibonacci_fast.c
|
||
|
@author: Krishna Vedala
|
||
|
@date 2 October, 2019
|
||
|
@brief Compute \f$m^{mth}\f$ Fibonacci number using the formulae:
|
||
|
\f{eqnarray*}{
|
||
|
F_{2n-1} &=& F_n^2 + F_{n-1}^2 \\
|
||
|
F_{2n} &=& F_n\left(2F_{n-1} + F_n\right)
|
||
|
\f}
|
||
|
*/
|
||
|
|
||
|
#include<stdio.h>
|
||
|
#include<stdlib.h>
|
||
|
#include<locale.h>
|
||
|
|
||
|
/**
|
||
|
Returns the \f$n^{th}\f$ and \f$n+1^{th}\f$ Fibonacci number.
|
||
|
The return variables are C & D respectively.
|
||
|
*/
|
||
|
void fib(unsigned long n, unsigned long *C, unsigned long *D)
|
||
|
{
|
||
|
//Out of Range checking
|
||
|
if(n < 0){
|
||
|
printf("\nNo Such term !\n");
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
unsigned long a, b, c, d;
|
||
|
|
||
|
if (n == 0)
|
||
|
{
|
||
|
C[0] = 0;
|
||
|
if(D)
|
||
|
D[0] = 1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
fib(n >> 1, &c, &d); /**< Compute F(n/2) */
|
||
|
|
||
|
a = c * ((d << 1) - c);
|
||
|
b = c * c + d * d;
|
||
|
if (n % 2 == 0) /**< If n is even */
|
||
|
{
|
||
|
C[0] = a;
|
||
|
if(D)
|
||
|
D[0] = b;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/**< If n is odd */
|
||
|
C[0] = b;
|
||
|
if(D)
|
||
|
D[0] = a + b;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
unsigned long number, result;
|
||
|
|
||
|
setlocale(LC_NUMERIC, ""); // format the printf output
|
||
|
|
||
|
//Asks for the number/position of term in Fibonnacci sequence
|
||
|
if (argc == 2)
|
||
|
number = atoi(argv[1]);
|
||
|
else {
|
||
|
printf("Enter the value of n(n starts from 0 ): ");
|
||
|
scanf("%lu", &number);
|
||
|
}
|
||
|
|
||
|
fib(number, &result, NULL);
|
||
|
|
||
|
printf("The nth term is : %'lu \n", result);
|
||
|
|
||
|
return 0;
|
||
|
}
|