TheAlgorithms-C/dynamic_programming/matrix_chain_order.c

92 lines
2.5 KiB
C
Raw Normal View History

/**
* @file
* @brief [Matrix Chain Order](https://en.wikipedia.org/wiki/Matrix_chain_multiplication)
* @details
* From Wikipedia: Matrix chain multiplication (or the matrix chain ordering problem)
* is an optimization problem concerning the most efficient way to multiply a given sequence of matrices.
* The problem is not actually to perform the multiplications,
* but merely to decide the sequence of the matrix multiplications involved.
* @author [CascadingCascade](https://github.com/CascadingCascade)
*/
#include <assert.h> /// for assert
#include <stdio.h> /// for IO operations
#include <limits.h> /// for INT_MAX macro
#include <stdlib.h> /// for malloc() and free()
/**
* @brief Finds the optimal sequence using the classic O(n^3) algorithm.
* @param l length of cost array
* @param p costs of each matrix
* @param s location to store results
* @returns number of operations
*/
int matrixChainOrder(int l,const int *p, int *s) {
// mat stores the cost for a chain that starts at i and ends on j (inclusive on both ends)
int mat[l][l];
for (int i = 0; i < l; ++i) {
mat[i][i] = 0;
}
// cl denotes the difference between start / end indices, cl + 1 would be chain length.
for (int cl = 1; cl < l; ++cl) {
for (int i = 0; i < l - cl; ++i) {
int j = i + cl;
mat[i][j] = INT_MAX;
for (int div = i; div < j; ++div) {
int q = mat[i][div] + mat[div + 1][j] + p[i] * p[div] * p[j];
if (q < mat[i][j]) {
mat[i][j] = q;
s[i * l + j] = div;
}
}
}
}
return mat[0][l - 1];
}
/**
* @brief Recursively prints the solution
* @param l dimension of the solutions array
* @param s solutions
* @param i starting index
* @param j ending index
* @returns void
*/
void printSolution(int l,int *s,int i,int j) {
if(i == j) {
printf("A%d",i);
return;
}
putchar('(');
printSolution(l,s,i,s[i * l + j]);
printSolution(l,s,s[i * l + j] + 1,j);
putchar(')');
}
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
int sizes[] = {35,15,5,10,20,25};
int len = 6;
int *sol = malloc(len * len * sizeof(int));
int r = matrixChainOrder(len,sizes,sol);
assert(r == 18625);
printf("Result : %d\n",r);
printf("Optimal ordering : ");
printSolution(len,sol,0,5);
free(sol);
printf("\n");
}
/**
* @brief Main function
* @returns 0
*/
int main() {
test(); // run self-test implementations
return 0;
}