demo | ||
screen | ||
gui.c | ||
gui.h | ||
LICENSE | ||
Readme.md |
GUI
This is a bloat free stateless immediate mode graphical user interface toolkit written in ANSI C. It was designed as a embeddable user interface for graphical application and does not have any direct dependencies. The main premise of this toolkit is to be as stateless and simple but at the same time as powerful as possible with fast streamlined development speed in mind.
Features
- Immediate mode graphical user interface toolkit
- Written in C89 (ANSI C)
- Small codebase (~3kLOC)
- Focus on portability and minimal internal state
- Suited for embedding into graphical applications
- No global hidden state
- No direct dependencies (not even libc!)
- Full memory management control
- Renderer and platform independent
- Configurable style and colors
- UTF-8 support
Target Audience
- Graphical tools/editors
- Library testbed UI
- Game engine debugging UI
- Graphical overlays
Limitations
- Is NOT a layered Framework it is a component
- Does NOT provide os window/input management
- Does NOT provide a renderer backend
- Does NOT implement a font library
Summary: It is only responsible for the actual user interface
Gallery
Example
struct gui_input input = {0};
struct gui_config config;
struct gui_font font = {...};
struct gui_memory memory;
struct gui_command_buffer buffer;
struct gui_panel panel;
memory.memory = calloc(MEMORY_SIZE, 1);
memory.size = MEMORY_SIZE;
gui_buffer_init_fixed(buffer, &memory, 0);
gui_default_config(&config);
font.userdata = your_font;
font.height = your_font_height;
font.width = your_font_string_width_function;
gui_panel_init(&panel, 50, 50, 220, 170,
GUI_PANEL_BORDER|GUI_PANEL_MOVEABLE|
GUI_PANEL_CLOSEABLE|GUI_PANEL_SCALEABLE|
GUI_PANEL_MINIMIZABLE, &config, &font);
while (1) {
gui_input_begin(&input);
/* record input */
gui_input_end(&input);
struct gui_canvas canvas;
struct gui_command_list list;
struct gui_panel_layout layout;
struct gui_memory_status status;
gui_buffer_begin(&canvas, &buffer, window_width, window_height);
gui_panel_begin(&layout, &panel, "Demo", &canvas, &input);
gui_panel_row(&layout, 30, 1);
if (gui_panel_button_text(&layout, "button", GUI_BUTTON_DEFAULT)) {
/* event handling */
}
gui_panel_row(&layout, 30, 2);
if (gui_panel_option(&layout, "easy", option == 0)) option = 0;
if (gui_panel_option(&layout, "hard", option == 1)) option = 1;
gui_panel_label(&layout, "input:", GUI_TEXT_LEFT);
len = gui_panel_edit(&layout, buffer, len, 256, &active, GUI_INPUT_DEFAULT);
gui_panel_end(&layout, &panel);
gui_buffer_end(&list, &buffer, &canvas, &status);
const struct gui_command *cmd = gui_list_begin(&list);
while (cmd) {
/* execute command */
cmd = gui_list_next(&list, cmd);
}
}
IMGUIs
Immediate mode in contrast to classical retained mode GUIs store as little state as possible by using procedural function calls as "widgets" instead of storing objects. Each "widget" function call takes hereby all its necessary data and immediately returns the through the user modified state back to the caller. Immediate mode graphical user interfaces therefore combine drawing and input handling into one unit instead of separating them like retain mode GUIs.
Since there is no to minimal internal state in immediate mode user interfaces, updates have to occur every frame which on one hand is more drawing expensive than classic retained GUI implementations but on the other hand grants a lot more flexibility and support for overall layout changes. In addition without any state there is no duplicated state between your program, the gui and the user which greatly simplifies code. Further traits of immediate mode graphic user interfaces are a code driven style, centralized flow control, easy extensibility and understandability.
Input
The gui_input
struct holds the user input over the course of the frame and
manages the complete modification of widget and panel state. Like the panel and
buffering, input is an immediate mode API and consist of an begin sequence
point with gui_input_begin
and a end sequence point with gui_input_end
.
All modifications can only occur between both of these
sequence points while all outside modifcation provoke undefined behavior.
struct gui_input input = {0};
while (1) {
gui_input_begin(&input);
/* record input */
gui_input_end(&input);
}
Font
Since there is no direct font implementation in the toolkit but font handling is still an aspect of a gui implemenatation the gui struct was introduced. It only contains the bare minimum of what is needed for font handling with a handle to your font structure, the font height and a callback to calculate the width of a given string.
Configuration
The gui toolkit provides a number of different attributes that can be
configured, like spacing, padding, size and color.
While the widget API even expects you to provide the configuration
for each and every widget the panel layer provides you with a set of
attributes in the gui_config
structure. The structure either needs to be
filled by the user or can be setup with some default values by the function
gui_default_config
. Modification on the fly to the gui_config
struct is in
true immediate mode fashion possible and supported.
Canvas
The Canvas is the abstract drawing interface between the GUI toolkit and the user and contains drawing callbacks for the primitives scissor, line, rectangle, circle, triangle, bitmap and text which need to be provided by the user. Main advantage of using the raw canvas instead of using buffering is that no memory to buffer all draw command is needed. Instead you can directly draw each requested primitive. The downside is setting up the canvas structure and the fact that you have to draw each primitive immediately. Internally the canvas is used to implement the buffering of primitive draw commands, but can be used to implement a different buffering scheme like buffering vertexes instead of primitives.
Buffering
For the purpose of deferred drawing or the implementation of overlapping panels
the command buffering API was added. The command buffer uses a canvas internally
and holds a queue of drawing commands for a number of primitives eg.: line, rectangle, circle,
triangle and text. The memory for the command buffer is provided by the user
in three possible ways. First by providing a fixed size memory block which
will be filled up until no memory is left.
The second way is extending the fixed size memory block by reallocating at the
end of the frame if the provided memory size was not sufficient.
The final and most complex way of memory management is by providing allocator
callbacks with alloc, realloc and free.
In true immediate mode fashion the buffering API is based around sequence
points with a begin sequence point gui_buffer_begin
and a end sequence
point gui_buffer_end
and modification of state between both points. Just
like the input API the buffer modification before the beginning or after the end
sequence point is undefined behavior.
struct gui_allocator allocator;
struct gui_memory_status status;
struct gui_command_list list;
struct gui_command_buffer buffer;
allocator.userdata = your_allocator
allocator.alloc = your_alloc_function;
allocator.realloc = your_relloc_function;
allocator.free = your_free_function;
gui_buffer_init(buffer, &allocator, 2.0f, INITAL_SIZE, 0);
while (1) {
struct gui_canvas canvas;
gui_buffer_begin(&canvas, &buffer, window_width, window_height);
/* add commands by using the canvas */
gui_buffer_end(&list, buffer, &status);
}
For the purpose of implementing multible panels, sub buffers were implemented. With sub buffers you can create one global buffer which owns the allocated memory and sub buffers which directly reference the global buffer. The biggest advantage is that you do not have to allocate a buffer for each panel and boil down the memory management to a single buffer.
struct gui_memory memory;
struct gui_memory_status status;
struct gui_command_list list;
struct gui_command_buffer buffer;
memory.memory = calloc(MEMORY_SIZE, 1);
memory.size = MEMORY_SIZE;
gui_buffer_init_fixed(buffer, &memory);
while (1) {
struct gui_canvas canvas;
struct gui_command_buffer sub;
gui_buffer_begin(NULL, &buffer, width, height);
gui_buffer_lock(&canvas, &buffer, &sub, 0, width, height);
/* add commands by using the canvas */
gui_buffer_unlock(&list, &buffer, &sub, &canvas, NULL);
gui_buffer_end(NULL, &buffer, NULL, &status);
}
Widgets
The minimal widget API provides a number of basic widgets and is designed for uses cases where no complex widget layouts or grouping is needed. In order for the GUI to work each widget needs a canvas to draw to, positional and widgets specific data as well as user input and returns the from the user input modified state of the widget.
struct gui_input input = {0};
struct gui_font font = {...};
struct gui_canvas canvas = {...};
struct gui_button style = {...};
while (1) {
if(gui_button_text(&canvas, 0, 0, 100, 30, "ok", GUI_BUTTON_DEFAULT, &style, &input, &font))
fprintf(stdout, "button pressed!\n");
}
Panels
To further extend the basic widget layer and remove some of the boilerplate
code the panel was introduced. The panel groups together a number of
widgets but in true immediate mode fashion does not save any state from
widgets that have been added to the panel. In addition the panel enables a
number of nice features on a group of widgets like movement, scaling,
hidding and minimizing. An additional use for panel is to further extend the
grouping of widgets into tabs, groups and shelfs.
The panel is divided into a struct gui_panel
with persistent life time and
the struct gui_panel_layout
structure with a temporary life time.
While the layout state is constantly modified over the course of
the frame, the panel struct is only modified at the immediate mode sequence points
gui_panel_begin
and gui_panel_end
. Therefore all changes to the panel struct inside of both
sequence points have no effect in the current frame and are only visible in the
next frame.
struct gui_font font;
struct gui_input input = {0};
struct gui_config config;
struct gui_canvas canvas;
struct gui_panel panel;
canvas.userdata = your_renderer_context;
canvas.scissor = your_scissor_function;
canvas.draw_line = your_draw_line_function;
canvas.draw_rect = your_draw_rectangle_function;
canvas.draw_circle = your_draw_circle_function;
canvas.draw_triangle = your_draw_triangle_function;
canvas.draw_image = your_draw_image_function;
canvas.draw_text = your_draw_text_function;
gui_default_config(&config);
font.userdata = your_font;
font.height = your_font_height;
font.width = your_font_string_len_function;
gui_panel_init(&panel, 50, 50, 300, 200, 0, &config, &font);
while (1) {
struct gui_panel_layout layout;
gui_panel_begin(&layout, &panel, "Demo", &canvas, &input);
gui_panel_row(&layout, 30, 1);
if (gui_panel_button_text(&layout, "button", GUI_BUTTON_DEFAULT))
fprintf(stdout, "button pressed!\n");
value = gui_panel_slider(&layout, 0, value, 10, 1);
progress = gui_panel_progress(&layout, progress, 100, gui_true);
gui_panel_end(&layout, &panel);
}
Stack
While using basic panels is fine for a single movable panel or a big number of
static panels, it has rather limited support for overlapping movable panels. For
that to change the panel stack was introduced. The panel stack holds the basic
drawing order of each panel so instead of drawing each panel individually they
have to be drawn in a certain order. The biggest problem while creating the API
was that the buffer has to saved with the panel, but the type of the buffer is
not known beforehand since it is possible to create your own buffer type.
Therefore just the sequence of panels is managed and you either have to cast
from the panel to your own type, use inheritance in C++ or use the container_of
macro from the Linux kernel. For the standard buffer there is already a type
gui_panel_hook
which contains the panel and the buffer output gui_command_list
,
which can be used to implement overlapping panels.
struct gui_panel_hook hook;
struct gui_memory memory = {...};
struct gui_memory_status status;
struct gui_command_buffer buffer;
struct gui_config config;
struct gui_font font = {...}
struct gui_input input = {0};
struct gui_stack stack;
gui_buffer_init_fixed(buffer, &memory);
gui_default_config(&config);
gui_hook_init(&hook, 50, 50, 300, 200, 0, &config, &font);
gui_stack_clear(&stack);
gui_stack_push_hook(&stack, &hook);
while (1) {
struct gui_panel_layout layout;
struct gui_canvas canvas;
gui_buffer_begin(&canvas, &buffer, window_width, window_height);
gui_hook_begin(&layout, &hook, &stack, "Demo", &canvas, &input);
gui_panel_row(&layout, 30, 1);
if (gui_panel_button_text(&layout, "button", GUI_BUTTON_DEFAULT))
fprintf(stdout, "button pressed!\n");
gui_hook_end(&layout, &hook);
gui_buffer_end(gui_hook_list(&hook), buffer, &status);
/* draw each panel */
struct gui_panel *iter = stack.begin;
while (iter) {
struct gui_panel_hook *h = gui_hook(iter);
const struct gui_command *cmd = gui_list_begin(gui_hook_list(h));
while (cmd) {
/* execute command */
cmd = gui_list_next(gui_hook_list(h), cmd);
}
iter = iter->next;
}
}
FAQ
Where is the demo/example code?
The demo and example code can be found in the demo folder. There is demo code for Linux(X11), Windows(win32) and OpenGL(SDL2, freetype). As for now there will be no DirectX demo since I don't have experience programming with DirectX but you are more than welcome to provide one.
Why did you use ANSI C and not C99 or C++?
Personally I stay out of all "discussions" about C vs C++ since they are totally worthless and never brought anything good with it. The simple answer is I personally love C and have nothing against people using C++ especially the new iterations with C++11 and C++14. While this hopefully settles my view on C vs C++ there is still ANSI C vs C99. While for personal projects I only use C99 with all its niceties, libraries are a little bit different. Libraries are designed to reach the highest number of users possible which brings me to ANSI C as the most portable version. In addition not all C compiler like the MSVC compiler fully support C99, which finalized my decision to use ANSI C.
Why do you typedef your own types instead of using the standard types?
This Project uses ANSI C which does not have the header file <stdint.h>
and therefore does not provide the fixed sized types that I need. Therefore
I defined my own types which need to be set to the correct size for each
platform. But if your development environment provides the header file you can define
GUI_USE_FIXED_SIZE_TYPES
to directly use the correct types.
Why is font/input/window management not provided?
As for window and input management it is a ton of work to abstract over all possible platforms and there are already libraries like SDL or SFML or even the platform itself which provide you with the functionality. So instead of reinventing the wheel and trying to do everything the project tries to be as independent and out of the users way as possible. This means in practice a little bit more work on the users behalf but grants a lot more freedom especially because the toolkit is designed to be embeddable.
The font management on the other hand is litte bit more tricky. In the beginning the toolkit had some basic font handling but I removed it later. This is mainly a question of if font handling should be part of a gui toolkit or not. As for a framework the question would definitely be yes but for a toolkit library the question is not as easy. In the end the project does not have font handling since there are already a number of font handling libraries in existence or even the platform (Xlib, Win32) itself already provides a solution.
References
- Tutorial from Jari Komppa about imgui libraries
- Johannes 'johno' Norneby's article
- Casey Muratori's original introduction to imgui's
- Casey Muratori's imgui panel design(1/2)
- Casey Muratori's imgui panel design(2/2)
- Casey Muratori: Designing and Evaluation Reusable Components
- ImGui: The inspiration for this project
- Nvidia's imgui toolkit
License
(The MIT License)