650 lines
14 KiB
C
650 lines
14 KiB
C
/**
|
|
* FreeRDP: A Remote Desktop Protocol Implementation
|
|
*
|
|
* Copyright 2014 Marc-Andre Moreau <marcandre.moreau@gmail.com>
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <freerdp/types.h>
|
|
#include <freerdp/primitives.h>
|
|
#include <freerdp/codec/color.h>
|
|
|
|
#include "prim_YUV.h"
|
|
|
|
static INLINE BYTE CLIP(INT32 X)
|
|
{
|
|
if (X > 255L)
|
|
return 255L;
|
|
if (X < 0L)
|
|
return 0L;
|
|
return X;
|
|
}
|
|
|
|
/**
|
|
* @brief general_YUV420CombineToYUV444
|
|
*
|
|
* @param pMainSrc Pointer to luma YUV420 data
|
|
* @param srcMainStep Step width in luma YUV420 data
|
|
* @param pAuxSrc Pointer to chroma YUV420 data
|
|
* @param srcAuxStep Step width in chroma YUV420 data
|
|
* @param pDst Pointer to YUV444 data
|
|
* @param dstStep Step width in YUV444 data
|
|
* @param roi Region of source to combine in destination.
|
|
*
|
|
* @return PRIMITIVES_SUCCESS on success, an error code otherwise.
|
|
*/
|
|
static pstatus_t general_YUV420CombineToYUV444(
|
|
const BYTE* pMainSrc[3], const UINT32 srcMainStep[3],
|
|
const BYTE* pAuxSrc[3], const UINT32 srcAuxStep[3],
|
|
BYTE* pDst[3], const UINT32 dstStep[3],
|
|
const prim_size_t* roi)
|
|
{
|
|
const UINT32 mod = 16;
|
|
UINT32 uY = 0;
|
|
UINT32 vY = 0;
|
|
UINT32 x, y;
|
|
UINT32 nWidth, nHeight;
|
|
UINT32 halfWidth, halfHeight;
|
|
const UINT32 oddY = 1;
|
|
const UINT32 evenY = 0;
|
|
const UINT32 oddX = 1;
|
|
const UINT32 evenX = 0;
|
|
|
|
/* The auxilary frame is aligned to multiples of 16x16.
|
|
* We need the padded height for B4 and B5 conversion. */
|
|
const UINT32 padHeigth = roi->height + 16 - roi->height % 16;
|
|
|
|
nWidth = roi->width;
|
|
nHeight = roi->height;
|
|
halfWidth = (nWidth ) / 2;
|
|
halfHeight = (nHeight) / 2;
|
|
|
|
if (pMainSrc)
|
|
{
|
|
/* Y data is already here... */
|
|
/* B1 */
|
|
for (y=0; y<nHeight; y++)
|
|
{
|
|
const BYTE* Ym = pMainSrc[0] + srcMainStep[0] * y;
|
|
BYTE* pY = pDst[0] + dstStep[0] * y;
|
|
|
|
memcpy(pY, Ym, nWidth);
|
|
}
|
|
|
|
/* The first half of U, V are already here part of this frame. */
|
|
/* B2 and B3 */
|
|
for (y=0; y<halfHeight; y++)
|
|
{
|
|
const UINT32 val2y = (2 * y + evenY);
|
|
const UINT32 val2y1 = val2y + oddY;
|
|
const BYTE* Um = pMainSrc[1] + srcMainStep[1] * y;
|
|
const BYTE* Vm = pMainSrc[2] + srcMainStep[2] * y;
|
|
BYTE* pU = pDst[1] + dstStep[1] * val2y;
|
|
BYTE* pV = pDst[2] + dstStep[2] * val2y;
|
|
BYTE* pU1 = pDst[1] + dstStep[1] * val2y1;
|
|
BYTE* pV1 = pDst[2] + dstStep[2] * val2y1;
|
|
|
|
for (x=0; x<halfWidth; x++)
|
|
{
|
|
const UINT32 val2x = 2*x + evenX;
|
|
const UINT32 val2x1 = val2x+oddX;
|
|
|
|
pU[val2x] = Um[x];
|
|
pV[val2x] = Vm[x];
|
|
pU[val2x1] = Um[x];
|
|
pV[val2x1] = Vm[x];
|
|
pU1[val2x] = Um[x];
|
|
pV1[val2x] = Vm[x];
|
|
pU1[val2x1] = Um[x];
|
|
pV1[val2x1] = Vm[x];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!pAuxSrc)
|
|
return PRIMITIVES_SUCCESS;
|
|
|
|
/* The second half of U and V is a bit more tricky... */
|
|
/* B4 and B5 */
|
|
for (y=0; y<padHeigth; y++)
|
|
{
|
|
const BYTE* Ya = pAuxSrc[0] + srcAuxStep[0] * y;
|
|
BYTE* pX;
|
|
|
|
if ((y) % mod < (mod + 1)/2)
|
|
{
|
|
const UINT32 pos = (2 * uY++ + oddY);
|
|
if (pos >= nHeight)
|
|
continue;
|
|
pX = pDst[1] + dstStep[1] * pos;
|
|
}
|
|
else
|
|
{
|
|
const UINT32 pos = (2 * vY++ + oddY);
|
|
if (pos >= nHeight)
|
|
continue;
|
|
pX = pDst[2] + dstStep[2] * pos;
|
|
}
|
|
|
|
memcpy(pX, Ya, nWidth);
|
|
}
|
|
|
|
/* B6 and B7 */
|
|
for (y=0; y<halfHeight; y++)
|
|
{
|
|
const UINT32 val2y = (y * 2 + evenY);
|
|
const BYTE* Ua = pAuxSrc[1] + srcAuxStep[1] * y;
|
|
const BYTE* Va = pAuxSrc[2] + srcAuxStep[2] * y;
|
|
BYTE* pU = pDst[1] + dstStep[1] * val2y;
|
|
BYTE* pV = pDst[2] + dstStep[2] * val2y;
|
|
|
|
for (x=0; x<halfWidth; x++)
|
|
{
|
|
const UINT32 val2x1 = (x * 2 + oddX);
|
|
pU[val2x1] = Ua[x];
|
|
pV[val2x1] = Va[x];
|
|
}
|
|
}
|
|
|
|
/* Filter */
|
|
for (y=0; y<halfHeight; y++)
|
|
{
|
|
const UINT32 val2y = (y * 2 + evenY);
|
|
const UINT32 val2y1 = val2y + oddY;
|
|
|
|
BYTE* pU1 = pDst[1] + dstStep[1] * val2y1;
|
|
BYTE* pV1 = pDst[2] + dstStep[2] * val2y1;
|
|
BYTE* pU = pDst[1] + dstStep[1] * val2y;
|
|
BYTE* pV = pDst[2] + dstStep[2] * val2y;
|
|
|
|
if (val2y1 > nHeight)
|
|
continue;
|
|
|
|
for (x=0; x<halfWidth; x++)
|
|
{
|
|
const UINT32 val2x = (x * 2);
|
|
const UINT32 val2x1 = val2x + 1;
|
|
const INT32 up = pU[val2x] * 4;
|
|
const INT32 vp = pV[val2x] * 4;
|
|
INT32 u2020;
|
|
INT32 v2020;
|
|
|
|
if (val2x1 > nWidth)
|
|
continue;
|
|
|
|
u2020 = up - pU[val2x1] - pU1[val2x] - pU1[val2x1];
|
|
v2020 = vp - pV[val2x1] - pV1[val2x] - pV1[val2x1];
|
|
|
|
pU[val2x] = CLIP(u2020);
|
|
pV[val2x] = CLIP(v2020);
|
|
}
|
|
}
|
|
|
|
return PRIMITIVES_SUCCESS;
|
|
}
|
|
|
|
static pstatus_t general_YUV444SplitToYUV420(
|
|
const BYTE* pSrc[3], const UINT32 srcStep[3],
|
|
BYTE* pMainDst[3], const UINT32 dstMainStep[3],
|
|
BYTE* pAuxDst[3], const UINT32 dstAuxStep[3],
|
|
const prim_size_t* roi)
|
|
{
|
|
UINT32 x, y, uY = 0, vY = 0;
|
|
UINT32 halfWidth, halfHeight;
|
|
/* The auxilary frame is aligned to multiples of 16x16.
|
|
* We need the padded height for B4 and B5 conversion. */
|
|
const UINT32 padHeigth = roi->height + 16 - roi->height % 16;
|
|
|
|
halfWidth = (roi->width + 1) / 2;
|
|
halfHeight = (roi->height + 1) / 2;
|
|
|
|
/* B1 */
|
|
for (y=0; y<roi->height; y++)
|
|
{
|
|
const BYTE* pSrcY = pSrc[0] + y * srcStep[0];
|
|
BYTE* pY = pMainDst[0] + y * dstMainStep[0];
|
|
memcpy(pY, pSrcY, roi->width);
|
|
}
|
|
|
|
/* B2 and B3 */
|
|
for (y=0; y<halfHeight; y++)
|
|
{
|
|
const BYTE* pSrcU = pSrc[1] + 2 * y * srcStep[1];
|
|
const BYTE* pSrcV = pSrc[2] + 2 * y * srcStep[2];
|
|
const BYTE* pSrcU1 = pSrc[1] + (2 * y + 1) * srcStep[1];
|
|
const BYTE* pSrcV1 = pSrc[2] + (2 * y + 1) * srcStep[2];
|
|
BYTE* pU = pMainDst[1] + y * dstMainStep[1];
|
|
BYTE* pV = pMainDst[2] + y * dstMainStep[2];
|
|
|
|
for (x=0; x<halfWidth; x++)
|
|
{
|
|
/* Filter */
|
|
const INT32 u = pSrcU[2*x] + pSrcU[2*x+1] + pSrcU1[2*x]
|
|
+ pSrcU1[2*x+1];
|
|
const INT32 v = pSrcV[2*x] + pSrcV[2*x+1] + pSrcV1[2*x]
|
|
+ pSrcV1[2*x+1];
|
|
pU[x] = CLIP(u / 4L);
|
|
pV[x] = CLIP(v / 4L);
|
|
}
|
|
}
|
|
|
|
/* B4 and B5 */
|
|
for (y=0; y<padHeigth; y++)
|
|
{
|
|
BYTE* pY = pAuxDst[0] + y * dstAuxStep[0];
|
|
|
|
if (y % 16 < 8)
|
|
{
|
|
const UINT32 pos = (2 * uY++ + 1);
|
|
const BYTE* pSrcU = pSrc[1] + pos * srcStep[1];
|
|
if (pos >= roi->height)
|
|
continue;
|
|
memcpy(pY, pSrcU, roi->width);
|
|
}
|
|
else
|
|
{
|
|
const UINT32 pos = (2 * vY++ + 1);
|
|
const BYTE* pSrcV = pSrc[2] + pos * srcStep[2];
|
|
if (pos >= roi->height)
|
|
continue;
|
|
memcpy(pY, pSrcV, roi->width);
|
|
}
|
|
}
|
|
|
|
/* B6 and B7 */
|
|
for (y=0; y<halfHeight; y++)
|
|
{
|
|
const BYTE* pSrcU = pSrc[1] + 2 * y * srcStep[1];
|
|
const BYTE* pSrcV = pSrc[2] + 2 * y * srcStep[2];
|
|
BYTE* pU = pAuxDst[1] + y * dstAuxStep[1];
|
|
BYTE* pV = pAuxDst[2] + y * dstAuxStep[2];
|
|
|
|
for (x=0; x<halfWidth; x++)
|
|
{
|
|
pU[x] = pSrcU[2*x+1];
|
|
pV[x] = pSrcV[2*x+1];
|
|
}
|
|
}
|
|
|
|
return PRIMITIVES_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* | R | ( | 256 0 403 | | Y | )
|
|
* | G | = ( | 256 -48 -120 | | U - 128 | ) >> 8
|
|
* | B | ( | 256 475 0 | | V - 128 | )
|
|
*/
|
|
static INLINE INT32 C(INT32 Y)
|
|
{
|
|
return (Y) - 0L;
|
|
}
|
|
|
|
static INLINE INT32 D(INT32 U)
|
|
{
|
|
return (U) - 128L;
|
|
}
|
|
|
|
static INLINE INT32 E(INT32 V)
|
|
{
|
|
return (V) - 128L;
|
|
}
|
|
|
|
static INLINE BYTE YUV2R(INT32 Y, INT32 U, INT32 V)
|
|
{
|
|
const INT32 r = ( 256L * C(Y) + 0L * D(U) + 403L * E(V));
|
|
const INT32 r8 = r >> 8L;
|
|
return CLIP(r8);
|
|
}
|
|
|
|
static INLINE BYTE YUV2G(INT32 Y, INT32 U, INT32 V)
|
|
{
|
|
const INT32 g = ( 256L * C(Y) - 48L * D(U) - 120L * E(V));
|
|
const INT32 g8 = g >> 8L;
|
|
return CLIP(g8);
|
|
}
|
|
|
|
static INLINE BYTE YUV2B(INT32 Y, INT32 U, INT32 V)
|
|
{
|
|
const INT32 b = ( 256L * C(Y) + 475L * D(U) + 0L * E(V));
|
|
const INT32 b8 = b >> 8L;
|
|
return CLIP(b8);
|
|
}
|
|
|
|
static pstatus_t general_YUV444ToRGB_8u_P3AC4R(
|
|
const BYTE* pSrc[3], const UINT32 srcStep[3],
|
|
BYTE* pDst, UINT32 dstStep, const prim_size_t* roi)
|
|
{
|
|
UINT32 x, y;
|
|
UINT32 nWidth, nHeight;
|
|
|
|
nWidth = roi->width;
|
|
nHeight = roi->height;
|
|
|
|
for (y = 0; y < nHeight; y++)
|
|
{
|
|
const BYTE* pY = pSrc[0] + y * srcStep[0];
|
|
const BYTE* pU = pSrc[1] + y * srcStep[1];
|
|
const BYTE* pV = pSrc[2] + y * srcStep[2];
|
|
BYTE* pRGB = pDst + y * dstStep;
|
|
|
|
for (x = 0; x < nWidth; x++)
|
|
{
|
|
const BYTE Y = pY[x];
|
|
const INT32 U = pU[x];
|
|
const INT32 V = pV[x];
|
|
|
|
pRGB[4*x+0] = YUV2B(Y, U, V);
|
|
pRGB[4*x+1] = YUV2G(Y, U, V);
|
|
pRGB[4*x+2] = YUV2R(Y, U, V);
|
|
pRGB[4*x+3] = 0xFF;
|
|
}
|
|
}
|
|
|
|
return PRIMITIVES_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* | R | ( | 256 0 403 | | Y | )
|
|
* | G | = ( | 256 -48 -120 | | U - 128 | ) >> 8
|
|
* | B | ( | 256 475 0 | | V - 128 | )
|
|
*/
|
|
|
|
static pstatus_t general_YUV420ToRGB_8u_P3AC4R(
|
|
const BYTE* pSrc[3], const UINT32 srcStep[3],
|
|
BYTE* pDst, UINT32 dstStep, const prim_size_t* roi)
|
|
{
|
|
UINT32 x, y;
|
|
UINT32 dstPad;
|
|
UINT32 srcPad[3];
|
|
BYTE Y, U, V;
|
|
UINT32 halfWidth;
|
|
UINT32 halfHeight;
|
|
const BYTE* pY;
|
|
const BYTE* pU;
|
|
const BYTE* pV;
|
|
BYTE* pRGB = pDst;
|
|
UINT32 nWidth, nHeight;
|
|
UINT32 lastRow, lastCol;
|
|
|
|
pY = pSrc[0];
|
|
pU = pSrc[1];
|
|
pV = pSrc[2];
|
|
|
|
lastCol = roi->width & 0x01;
|
|
lastRow = roi->height & 0x01;
|
|
|
|
nWidth = (roi->width + 1) & ~0x0001;
|
|
nHeight = (roi->height + 1) & ~0x0001;
|
|
|
|
halfWidth = nWidth / 2;
|
|
halfHeight = nHeight / 2;
|
|
|
|
srcPad[0] = (srcStep[0] - nWidth);
|
|
srcPad[1] = (srcStep[1] - halfWidth);
|
|
srcPad[2] = (srcStep[2] - halfWidth);
|
|
|
|
dstPad = (dstStep - (nWidth * 4));
|
|
|
|
for (y = 0; y < halfHeight; )
|
|
{
|
|
if (++y == halfHeight)
|
|
lastRow <<= 1;
|
|
|
|
for (x = 0; x < halfWidth; )
|
|
{
|
|
if (++x == halfWidth)
|
|
lastCol <<= 1;
|
|
|
|
U = *pU++;
|
|
V = *pV++;
|
|
|
|
/* 1st pixel */
|
|
Y = *pY++;
|
|
|
|
*pRGB++ = YUV2B(Y, U, V);
|
|
*pRGB++ = YUV2G(Y, U, V);
|
|
*pRGB++ = YUV2R(Y, U, V);
|
|
*pRGB++ = 0xFF;
|
|
|
|
/* 2nd pixel */
|
|
if (!(lastCol & 0x02))
|
|
{
|
|
Y = *pY++;
|
|
|
|
*pRGB++ = YUV2B(Y, U, V);
|
|
*pRGB++ = YUV2G(Y, U, V);
|
|
*pRGB++ = YUV2R(Y, U, V);
|
|
*pRGB++ = 0xFF;
|
|
}
|
|
else
|
|
{
|
|
pY++;
|
|
pRGB += 4;
|
|
lastCol >>= 1;
|
|
}
|
|
}
|
|
|
|
pY += srcPad[0];
|
|
pU -= halfWidth;
|
|
pV -= halfWidth;
|
|
pRGB += dstPad;
|
|
|
|
if (lastRow & 0x02)
|
|
break;
|
|
|
|
for (x = 0; x < halfWidth; )
|
|
{
|
|
if (++x == halfWidth)
|
|
lastCol <<= 1;
|
|
|
|
U = *pU++;
|
|
V = *pV++;
|
|
|
|
/* 3rd pixel */
|
|
Y = *pY++;
|
|
|
|
*pRGB++ = YUV2B(Y, U, V);
|
|
*pRGB++ = YUV2G(Y, U, V);
|
|
*pRGB++ = YUV2R(Y, U, V);
|
|
*pRGB++ = 0xFF;
|
|
|
|
/* 4th pixel */
|
|
if (!(lastCol & 0x02))
|
|
{
|
|
Y = *pY++;
|
|
|
|
*pRGB++ = YUV2B(Y, U, V);
|
|
*pRGB++ = YUV2G(Y, U, V);
|
|
*pRGB++ = YUV2R(Y, U, V);
|
|
*pRGB++ = 0xFF;
|
|
}
|
|
else
|
|
{
|
|
pY++;
|
|
pRGB += 4;
|
|
lastCol >>= 1;
|
|
}
|
|
}
|
|
|
|
pY += srcPad[0];
|
|
pU += srcPad[1];
|
|
pV += srcPad[2];
|
|
pRGB += dstPad;
|
|
}
|
|
|
|
return PRIMITIVES_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* | Y | ( | 54 183 18 | | R | ) | 0 |
|
|
* | U | = ( | -29 -99 128 | | G | ) >> 8 + | 128 |
|
|
* | V | ( | 128 -116 -12 | | B | ) | 128 |
|
|
*/
|
|
static INLINE BYTE RGB2Y(INT32 R, INT32 G, INT32 B)
|
|
{
|
|
const INT32 y = ( 54L * (R) + 183L * (G) + 18L * (B));
|
|
const INT32 y8 = (y >> 8L);
|
|
|
|
return CLIP(y8);
|
|
}
|
|
|
|
static INLINE BYTE RGB2U(INT32 R, INT32 G, INT32 B)
|
|
{
|
|
const INT32 u = ( -29L * (R) - 99L * (G) + 128L * (B));
|
|
const INT32 u8 = (u >> 8L) + 128L;
|
|
|
|
return CLIP(u8);
|
|
}
|
|
|
|
static INLINE BYTE RGB2V(INT32 R, INT32 G, INT32 B)
|
|
{
|
|
const INT32 v = ( 128L * (R) - 116L * (G) - 12L * (B));
|
|
const INT32 v8 = (v >> 8L) + 128L;
|
|
|
|
return CLIP(v8);
|
|
}
|
|
|
|
static pstatus_t general_RGBToYUV444_8u_P3AC4R(
|
|
const BYTE* pSrc, const UINT32 srcStep,
|
|
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
|
|
{
|
|
UINT32 x, y;
|
|
UINT32 nWidth, nHeight;
|
|
|
|
nWidth = roi->width;
|
|
nHeight = roi->height;
|
|
|
|
for (y=0; y<nHeight; y++)
|
|
{
|
|
const BYTE* pRGB = pSrc + y * srcStep;
|
|
|
|
BYTE* pY = pDst[0] + y * dstStep[0];
|
|
BYTE* pU = pDst[1] + y * dstStep[1];
|
|
BYTE* pV = pDst[2] + y * dstStep[2];
|
|
|
|
for (x=0; x<nWidth; x++)
|
|
{
|
|
const BYTE B = pRGB[4*x+0];
|
|
const BYTE G = pRGB[4*x+1];
|
|
const BYTE R = pRGB[4*x+2];
|
|
|
|
pY[x] = RGB2Y(R, G, B);
|
|
pU[x] = RGB2U(R, G, B);
|
|
pV[x] = RGB2V(R, G, B);
|
|
}
|
|
}
|
|
|
|
return PRIMITIVES_SUCCESS;
|
|
}
|
|
|
|
static pstatus_t general_RGBToYUV420_8u_P3AC4R(
|
|
const BYTE* pSrc, UINT32 srcStep,
|
|
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
|
|
{
|
|
UINT32 x, y;
|
|
UINT32 halfWidth;
|
|
UINT32 halfHeight;
|
|
UINT32 nWidth, nHeight;
|
|
|
|
nWidth = roi->width + roi->width % 2;
|
|
nHeight = roi->height + roi->height % 2;
|
|
|
|
halfWidth = (nWidth + nWidth % 2) / 2;
|
|
halfHeight = (nHeight + nHeight % 2) / 2;
|
|
|
|
for (y = 0; y < halfHeight; y++)
|
|
{
|
|
const UINT32 val2y = (y * 2);
|
|
const UINT32 val2y1 = val2y + 1;
|
|
const BYTE* pRGB = pSrc + val2y * srcStep;
|
|
const BYTE* pRGB1 = pSrc + val2y1 * srcStep;
|
|
|
|
BYTE* pY = pDst[0] + val2y * dstStep[0];
|
|
BYTE* pY1 = pDst[0] + val2y1 * dstStep[0];
|
|
BYTE* pU = pDst[1] + y * dstStep[1];
|
|
BYTE* pV = pDst[2] + y * dstStep[2];
|
|
|
|
for (x = 0; x < halfWidth; x++)
|
|
{
|
|
INT32 R, G, B;
|
|
INT32 Ra, Ga, Ba;
|
|
const UINT32 val2x = (x * 2);
|
|
const UINT32 val2x1 = val2x + 1;
|
|
|
|
/* 1st pixel */
|
|
Ba = B = pRGB[val2x * 4 + 0];
|
|
Ga = G = pRGB[val2x * 4 + 1];
|
|
Ra = R = pRGB[val2x * 4 + 2];
|
|
pY[val2x] = RGB2Y(R, G, B);
|
|
|
|
if (val2x1 < nWidth)
|
|
{
|
|
/* 2nd pixel */
|
|
Ba += B = pRGB[val2x * 4 + 4];
|
|
Ga += G = pRGB[val2x * 4 + 5];
|
|
Ra += R = pRGB[val2x * 4 + 6];
|
|
pY[val2x1] = RGB2Y(R, G, B);
|
|
}
|
|
|
|
if (val2y1 < nHeight)
|
|
{
|
|
/* 3rd pixel */
|
|
Ba += B = pRGB1[val2x * 4 + 0];
|
|
Ga += G = pRGB1[val2x * 4 + 1];
|
|
Ra += R = pRGB1[val2x * 4 + 2];
|
|
pY1[val2x] = RGB2Y(R, G, B);
|
|
|
|
if (val2x1 < nWidth)
|
|
{
|
|
/* 4th pixel */
|
|
Ba += B = pRGB1[val2x * 4 + 4];
|
|
Ga += G = pRGB1[val2x * 4 + 5];
|
|
Ra += R = pRGB1[val2x * 4 + 6];
|
|
pY1[val2x1] = RGB2Y(R, G, B);
|
|
}
|
|
}
|
|
|
|
Ba >>= 2;
|
|
Ga >>= 2;
|
|
Ra >>= 2;
|
|
|
|
pU[x] = RGB2U(Ra, Ga, Ba);
|
|
pV[x] = RGB2V(Ra, Ga, Ba);
|
|
}
|
|
}
|
|
|
|
return PRIMITIVES_SUCCESS;
|
|
}
|
|
|
|
void primitives_init_YUV(primitives_t* prims)
|
|
{
|
|
prims->YUV420ToRGB_8u_P3AC4R = general_YUV420ToRGB_8u_P3AC4R;
|
|
prims->YUV444ToRGB_8u_P3AC4R = general_YUV444ToRGB_8u_P3AC4R;
|
|
prims->RGBToYUV420_8u_P3AC4R = general_RGBToYUV420_8u_P3AC4R;
|
|
prims->RGBToYUV444_8u_P3AC4R = general_RGBToYUV444_8u_P3AC4R;
|
|
prims->YUV420CombineToYUV444 = general_YUV420CombineToYUV444;
|
|
prims->YUV444SplitToYUV420 = general_YUV444SplitToYUV420;
|
|
|
|
primitives_init_YUV_opt(prims);
|
|
}
|
|
|
|
void primitives_deinit_YUV(primitives_t* prims)
|
|
{
|
|
|
|
}
|