FreeRDP/libfreerdp/primitives/prim_YUV.c
2017-02-16 17:03:40 +01:00

964 lines
23 KiB
C

/**
* FreeRDP: A Remote Desktop Protocol Implementation
* Generic YUV/RGB conversion operations
*
* Copyright 2014 Marc-Andre Moreau <marcandre.moreau@gmail.com>
* Copyright 2015-2017 Armin Novak <armin.novak@thincast.com>
* Copyright 2015-2017 Norbert Federa <norbert.federa@thincast.com>
* Copyright 2015-2017 Vic Lee
* Copyright 2015-2017 Thincast Technologies GmbH
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <freerdp/types.h>
#include <freerdp/primitives.h>
#include <freerdp/codec/color.h>
#include "prim_internal.h"
/**
* @brief general_YUV420CombineToYUV444
*
* @param pMainSrc Pointer to luma YUV420 data
* @param srcMainStep Step width in luma YUV420 data
* @param pAuxSrc Pointer to chroma YUV420 data
* @param srcAuxStep Step width in chroma YUV420 data
* @param pDst Pointer to YUV444 data
* @param dstStep Step width in YUV444 data
* @param roi Region of source to combine in destination.
*
* @return PRIMITIVES_SUCCESS on success, an error code otherwise.
*/
static pstatus_t general_YUV420CombineToYUV444(
const BYTE* pMainSrc[3], const UINT32 srcMainStep[3],
const BYTE* pAuxSrc[3], const UINT32 srcAuxStep[3],
BYTE* pDst[3], const UINT32 dstStep[3],
const prim_size_t* roi)
{
const UINT32 mod = 16;
UINT32 uY = 0;
UINT32 vY = 0;
UINT32 x, y;
UINT32 nWidth, nHeight;
UINT32 halfWidth, halfHeight;
const UINT32 oddY = 1;
const UINT32 evenY = 0;
const UINT32 oddX = 1;
const UINT32 evenX = 0;
/* The auxilary frame is aligned to multiples of 16x16.
* We need the padded height for B4 and B5 conversion. */
const UINT32 padHeigth = roi->height + 16 - roi->height % 16;
nWidth = roi->width;
nHeight = roi->height;
halfWidth = (nWidth) / 2;
halfHeight = (nHeight) / 2;
if (pMainSrc && pMainSrc[0] && pMainSrc[1] && pMainSrc[2])
{
/* Y data is already here... */
/* B1 */
for (y = 0; y < nHeight; y++)
{
const BYTE* Ym = pMainSrc[0] + srcMainStep[0] * y;
BYTE* pY = pDst[0] + dstStep[0] * y;
memcpy(pY, Ym, nWidth);
}
/* The first half of U, V are already here part of this frame. */
/* B2 and B3 */
for (y = 0; y < halfHeight; y++)
{
const UINT32 val2y = (2 * y + evenY);
const UINT32 val2y1 = val2y + oddY;
const BYTE* Um = pMainSrc[1] + srcMainStep[1] * y;
const BYTE* Vm = pMainSrc[2] + srcMainStep[2] * y;
BYTE* pU = pDst[1] + dstStep[1] * val2y;
BYTE* pV = pDst[2] + dstStep[2] * val2y;
BYTE* pU1 = pDst[1] + dstStep[1] * val2y1;
BYTE* pV1 = pDst[2] + dstStep[2] * val2y1;
for (x = 0; x < halfWidth; x++)
{
const UINT32 val2x = 2 * x + evenX;
const UINT32 val2x1 = val2x + oddX;
pU[val2x] = Um[x];
pV[val2x] = Vm[x];
pU[val2x1] = Um[x];
pV[val2x1] = Vm[x];
pU1[val2x] = Um[x];
pV1[val2x] = Vm[x];
pU1[val2x1] = Um[x];
pV1[val2x1] = Vm[x];
}
}
}
if (!pAuxSrc || !pAuxSrc[0] || !pAuxSrc[1] || !pAuxSrc[2])
return PRIMITIVES_SUCCESS;
/* The second half of U and V is a bit more tricky... */
/* B4 and B5 */
for (y = 0; y < padHeigth; y++)
{
const BYTE* Ya = pAuxSrc[0] + srcAuxStep[0] * y;
BYTE* pX;
if ((y) % mod < (mod + 1) / 2)
{
const UINT32 pos = (2 * uY++ + oddY);
if (pos >= nHeight)
continue;
pX = pDst[1] + dstStep[1] * pos;
}
else
{
const UINT32 pos = (2 * vY++ + oddY);
if (pos >= nHeight)
continue;
pX = pDst[2] + dstStep[2] * pos;
}
memcpy(pX, Ya, nWidth);
}
/* B6 and B7 */
for (y = 0; y < halfHeight; y++)
{
const UINT32 val2y = (y * 2 + evenY);
const BYTE* Ua = pAuxSrc[1] + srcAuxStep[1] * y;
const BYTE* Va = pAuxSrc[2] + srcAuxStep[2] * y;
BYTE* pU = pDst[1] + dstStep[1] * val2y;
BYTE* pV = pDst[2] + dstStep[2] * val2y;
for (x = 0; x < halfWidth; x++)
{
const UINT32 val2x1 = (x * 2 + oddX);
pU[val2x1] = Ua[x];
pV[val2x1] = Va[x];
}
}
/* Filter */
for (y = 0; y < halfHeight; y++)
{
const UINT32 val2y = (y * 2 + evenY);
const UINT32 val2y1 = val2y + oddY;
BYTE* pU1 = pDst[1] + dstStep[1] * val2y1;
BYTE* pV1 = pDst[2] + dstStep[2] * val2y1;
BYTE* pU = pDst[1] + dstStep[1] * val2y;
BYTE* pV = pDst[2] + dstStep[2] * val2y;
if (val2y1 > nHeight)
continue;
for (x = 0; x < halfWidth; x++)
{
const UINT32 val2x = (x * 2);
const UINT32 val2x1 = val2x + 1;
const INT32 up = pU[val2x] * 4;
const INT32 vp = pV[val2x] * 4;
INT32 u2020;
INT32 v2020;
if (val2x1 > nWidth)
continue;
u2020 = up - pU[val2x1] - pU1[val2x] - pU1[val2x1];
v2020 = vp - pV[val2x1] - pV1[val2x] - pV1[val2x1];
pU[val2x] = CLIP(u2020);
pV[val2x] = CLIP(v2020);
}
}
return PRIMITIVES_SUCCESS;
}
static pstatus_t general_YUV444SplitToYUV420(
const BYTE* pSrc[3], const UINT32 srcStep[3],
BYTE* pMainDst[3], const UINT32 dstMainStep[3],
BYTE* pAuxDst[3], const UINT32 dstAuxStep[3],
const prim_size_t* roi)
{
UINT32 x, y, uY = 0, vY = 0;
UINT32 halfWidth, halfHeight;
/* The auxilary frame is aligned to multiples of 16x16.
* We need the padded height for B4 and B5 conversion. */
const UINT32 padHeigth = roi->height + 16 - roi->height % 16;
halfWidth = (roi->width + 1) / 2;
halfHeight = (roi->height + 1) / 2;
/* B1 */
for (y = 0; y < roi->height; y++)
{
const BYTE* pSrcY = pSrc[0] + y * srcStep[0];
BYTE* pY = pMainDst[0] + y * dstMainStep[0];
memcpy(pY, pSrcY, roi->width);
}
/* B2 and B3 */
for (y = 0; y < halfHeight; y++)
{
const BYTE* pSrcU = pSrc[1] + 2 * y * srcStep[1];
const BYTE* pSrcV = pSrc[2] + 2 * y * srcStep[2];
const BYTE* pSrcU1 = pSrc[1] + (2 * y + 1) * srcStep[1];
const BYTE* pSrcV1 = pSrc[2] + (2 * y + 1) * srcStep[2];
BYTE* pU = pMainDst[1] + y * dstMainStep[1];
BYTE* pV = pMainDst[2] + y * dstMainStep[2];
for (x = 0; x < halfWidth; x++)
{
/* Filter */
const INT32 u = pSrcU[2 * x] + pSrcU[2 * x + 1] + pSrcU1[2 * x]
+ pSrcU1[2 * x + 1];
const INT32 v = pSrcV[2 * x] + pSrcV[2 * x + 1] + pSrcV1[2 * x]
+ pSrcV1[2 * x + 1];
pU[x] = CLIP(u / 4L);
pV[x] = CLIP(v / 4L);
}
}
/* B4 and B5 */
for (y = 0; y < padHeigth; y++)
{
BYTE* pY = pAuxDst[0] + y * dstAuxStep[0];
if (y % 16 < 8)
{
const UINT32 pos = (2 * uY++ + 1);
const BYTE* pSrcU = pSrc[1] + pos * srcStep[1];
if (pos >= roi->height)
continue;
memcpy(pY, pSrcU, roi->width);
}
else
{
const UINT32 pos = (2 * vY++ + 1);
const BYTE* pSrcV = pSrc[2] + pos * srcStep[2];
if (pos >= roi->height)
continue;
memcpy(pY, pSrcV, roi->width);
}
}
/* B6 and B7 */
for (y = 0; y < halfHeight; y++)
{
const BYTE* pSrcU = pSrc[1] + 2 * y * srcStep[1];
const BYTE* pSrcV = pSrc[2] + 2 * y * srcStep[2];
BYTE* pU = pAuxDst[1] + y * dstAuxStep[1];
BYTE* pV = pAuxDst[2] + y * dstAuxStep[2];
for (x = 0; x < halfWidth; x++)
{
pU[x] = pSrcU[2 * x + 1];
pV[x] = pSrcV[2 * x + 1];
}
}
return PRIMITIVES_SUCCESS;
}
static pstatus_t general_YUV444ToRGB_8u_P3AC4R_general(
const BYTE* pSrc[3], const UINT32 srcStep[3],
BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
const prim_size_t* roi)
{
UINT32 x, y;
UINT32 nWidth, nHeight;
const DWORD formatSize = GetBytesPerPixel(DstFormat);
fkt_writePixel writePixel = getPixelWriteFunction(DstFormat);
nWidth = roi->width;
nHeight = roi->height;
for (y = 0; y < nHeight; y++)
{
const BYTE* pY = pSrc[0] + y * srcStep[0];
const BYTE* pU = pSrc[1] + y * srcStep[1];
const BYTE* pV = pSrc[2] + y * srcStep[2];
BYTE* pRGB = pDst + y * dstStep;
for (x = 0; x < nWidth; x++)
{
const BYTE Y = pY[x];
const BYTE U = pU[x];
const BYTE V = pV[x];
const BYTE r = YUV2R(Y, U, V);
const BYTE g = YUV2G(Y, U, V);
const BYTE b = YUV2B(Y, U, V);
pRGB = (*writePixel)(pRGB, formatSize, DstFormat, r, g, b, 0xFF);
}
}
return PRIMITIVES_SUCCESS;
}
static pstatus_t general_YUV444ToRGB_8u_P3AC4R_BGRX(
const BYTE* pSrc[3], const UINT32 srcStep[3],
BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
const prim_size_t* roi)
{
UINT32 x, y;
UINT32 nWidth, nHeight;
const DWORD formatSize = GetBytesPerPixel(DstFormat);
nWidth = roi->width;
nHeight = roi->height;
for (y = 0; y < nHeight; y++)
{
const BYTE* pY = pSrc[0] + y * srcStep[0];
const BYTE* pU = pSrc[1] + y * srcStep[1];
const BYTE* pV = pSrc[2] + y * srcStep[2];
BYTE* pRGB = pDst + y * dstStep;
for (x = 0; x < nWidth; x++)
{
const BYTE Y = pY[x];
const BYTE U = pU[x];
const BYTE V = pV[x];
const BYTE r = YUV2R(Y, U, V);
const BYTE g = YUV2G(Y, U, V);
const BYTE b = YUV2B(Y, U, V);
pRGB = writePixelBGRX(pRGB, formatSize, DstFormat, r, g, b, 0xFF);
}
}
return PRIMITIVES_SUCCESS;
}
static pstatus_t general_YUV444ToRGB_8u_P3AC4R(
const BYTE* pSrc[3], const UINT32 srcStep[3],
BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
const prim_size_t* roi)
{
switch (DstFormat)
{
case PIXEL_FORMAT_BGRA32:
case PIXEL_FORMAT_BGRX32:
return general_YUV444ToRGB_8u_P3AC4R_BGRX(pSrc, srcStep, pDst, dstStep, DstFormat, roi);
default:
return general_YUV444ToRGB_8u_P3AC4R_general(pSrc, srcStep, pDst, dstStep, DstFormat, roi);
}
}
/**
* | R | ( | 256 0 403 | | Y | )
* | G | = ( | 256 -48 -120 | | U - 128 | ) >> 8
* | B | ( | 256 475 0 | | V - 128 | )
*/
static pstatus_t general_YUV420ToRGB_8u_P3AC4R(
const BYTE* pSrc[3], const UINT32 srcStep[3],
BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
const prim_size_t* roi)
{
UINT32 x, y;
UINT32 dstPad;
UINT32 srcPad[3];
BYTE Y, U, V;
UINT32 halfWidth;
UINT32 halfHeight;
const BYTE* pY;
const BYTE* pU;
const BYTE* pV;
BYTE* pRGB = pDst;
UINT32 nWidth, nHeight;
UINT32 lastRow, lastCol;
const DWORD formatSize = GetBytesPerPixel(DstFormat);
fkt_writePixel writePixel = getPixelWriteFunction(DstFormat);
pY = pSrc[0];
pU = pSrc[1];
pV = pSrc[2];
lastCol = roi->width & 0x01;
lastRow = roi->height & 0x01;
nWidth = (roi->width + 1) & ~0x0001;
nHeight = (roi->height + 1) & ~0x0001;
halfWidth = nWidth / 2;
halfHeight = nHeight / 2;
srcPad[0] = (srcStep[0] - nWidth);
srcPad[1] = (srcStep[1] - halfWidth);
srcPad[2] = (srcStep[2] - halfWidth);
dstPad = (dstStep - (nWidth * 4));
for (y = 0; y < halfHeight;)
{
if (++y == halfHeight)
lastRow <<= 1;
for (x = 0; x < halfWidth;)
{
BYTE r;
BYTE g;
BYTE b;
if (++x == halfWidth)
lastCol <<= 1;
U = *pU++;
V = *pV++;
/* 1st pixel */
Y = *pY++;
r = YUV2R(Y, U, V);
g = YUV2G(Y, U, V);
b = YUV2B(Y, U, V);
pRGB = (*writePixel)(pRGB, formatSize, DstFormat, r, g, b, 0xFF);
/* 2nd pixel */
if (!(lastCol & 0x02))
{
Y = *pY++;
r = YUV2R(Y, U, V);
g = YUV2G(Y, U, V);
b = YUV2B(Y, U, V);
pRGB = (*writePixel)(pRGB, formatSize, DstFormat, r, g, b, 0xFF);
}
else
{
pY++;
pRGB += formatSize;
lastCol >>= 1;
}
}
pY += srcPad[0];
pU -= halfWidth;
pV -= halfWidth;
pRGB += dstPad;
if (lastRow & 0x02)
break;
for (x = 0; x < halfWidth;)
{
BYTE r;
BYTE g;
BYTE b;
if (++x == halfWidth)
lastCol <<= 1;
U = *pU++;
V = *pV++;
/* 3rd pixel */
Y = *pY++;
r = YUV2R(Y, U, V);
g = YUV2G(Y, U, V);
b = YUV2B(Y, U, V);
pRGB = (*writePixel)(pRGB, formatSize, DstFormat, r, g, b, 0xFF);
/* 4th pixel */
if (!(lastCol & 0x02))
{
Y = *pY++;
r = YUV2R(Y, U, V);
g = YUV2G(Y, U, V);
b = YUV2B(Y, U, V);
pRGB = (*writePixel)(pRGB, formatSize, DstFormat, r, g, b, 0xFF);
}
else
{
pY++;
pRGB += formatSize;
lastCol >>= 1;
}
}
pY += srcPad[0];
pU += srcPad[1];
pV += srcPad[2];
pRGB += dstPad;
}
return PRIMITIVES_SUCCESS;
}
/**
* | Y | ( | 54 183 18 | | R | ) | 0 |
* | U | = ( | -29 -99 128 | | G | ) >> 8 + | 128 |
* | V | ( | 128 -116 -12 | | B | ) | 128 |
*/
static INLINE BYTE RGB2Y(BYTE R, BYTE G, BYTE B)
{
return (54 * R + 183 * G + 18 * B) >> 8;
}
static INLINE BYTE RGB2U(BYTE R, BYTE G, BYTE B)
{
return ((-29 * R - 99 * G + 128 * B) >> 8) + 128;
}
static INLINE BYTE RGB2V(INT32 R, INT32 G, INT32 B)
{
return ((128L * R - 116 * G - 12 * B) >> 8) + 128;
}
static pstatus_t general_RGBToYUV444_8u_P3AC4R(
const BYTE* pSrc, UINT32 SrcFormat, const UINT32 srcStep,
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
{
const UINT32 bpp = GetBytesPerPixel(SrcFormat);
UINT32 x, y;
UINT32 nWidth, nHeight;
nWidth = roi->width;
nHeight = roi->height;
for (y = 0; y < nHeight; y++)
{
const BYTE* pRGB = pSrc + y * srcStep;
BYTE* pY = pDst[0] + y * dstStep[0];
BYTE* pU = pDst[1] + y * dstStep[1];
BYTE* pV = pDst[2] + y * dstStep[2];
for (x = 0; x < nWidth; x++)
{
BYTE B, G, R;
const UINT32 color = ReadColor(&pRGB[x * bpp], SrcFormat);
SplitColor(color, SrcFormat, &R, &G, &B, NULL, NULL);
pY[x] = RGB2Y(R, G, B);
pU[x] = RGB2U(R, G, B);
pV[x] = RGB2V(R, G, B);
}
}
return PRIMITIVES_SUCCESS;
}
static INLINE pstatus_t general_RGBToYUV420_BGRX(
const BYTE* pSrc, UINT32 srcStep,
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
{
UINT32 x, y, i;
size_t x1 = 0, x2 = 4, x3 = srcStep, x4 = srcStep + 4;
size_t y1 = 0, y2 = 1, y3 = dstStep[0], y4 = dstStep[0] + 1;
UINT32 max_x = roi->width - 1;
UINT32 max_y = roi->height - 1;
for (y = i = 0; y < roi->height; y += 2, i++)
{
const BYTE* src = pSrc + y * srcStep;
BYTE* ydst = pDst[0] + y * dstStep[0];
BYTE* udst = pDst[1] + i * dstStep[1];
BYTE* vdst = pDst[2] + i * dstStep[2];
for (x = 0; x < roi->width; x += 2)
{
BYTE R, G, B;
INT32 Ra, Ga, Ba;
/* row 1, pixel 1 */
Ba = B = *(src + x1 + 0);
Ga = G = *(src + x1 + 1);
Ra = R = *(src + x1 + 2);
ydst[y1] = RGB2Y(R, G, B);
if (x < max_x)
{
/* row 1, pixel 2 */
Ba += B = *(src + x2 + 0);
Ga += G = *(src + x2 + 1);
Ra += R = *(src + x2 + 2);
ydst[y2] = RGB2Y(R, G, B);
}
if (y < max_y)
{
/* row 2, pixel 1 */
Ba += B = *(src + x3 + 0);
Ga += G = *(src + x3 + 1);
Ra += R = *(src + x3 + 2);
ydst[y3] = RGB2Y(R, G, B);
if (x < max_x)
{
/* row 2, pixel 2 */
Ba += B = *(src + x4 + 0);
Ga += G = *(src + x4 + 1);
Ra += R = *(src + x4 + 2);
ydst[y4] = RGB2Y(R, G, B);
}
}
Ba >>= 2;
Ga >>= 2;
Ra >>= 2;
*udst++ = RGB2U(Ra, Ga, Ba);
*vdst++ = RGB2V(Ra, Ga, Ba);
ydst += 2;
src += 8;
}
}
return PRIMITIVES_SUCCESS;
}
static INLINE pstatus_t general_RGBToYUV420_ANY(
const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
{
const UINT32 bpp = GetBytesPerPixel(srcFormat);
UINT32 x, y, i;
size_t x1 = 0, x2 = bpp, x3 = srcStep, x4 = srcStep + bpp;
size_t y1 = 0, y2 = 1, y3 = dstStep[0], y4 = dstStep[0] + 1;
UINT32 max_x = roi->width - 1;
UINT32 max_y = roi->height - 1;
for (y = i = 0; y < roi->height; y += 2, i++)
{
const BYTE* src = pSrc + y * srcStep;
BYTE* ydst = pDst[0] + y * dstStep[0];
BYTE* udst = pDst[1] + i * dstStep[1];
BYTE* vdst = pDst[2] + i * dstStep[2];
for (x = 0; x < roi->width; x += 2)
{
BYTE R, G, B;
INT32 Ra, Ga, Ba;
UINT32 color;
/* row 1, pixel 1 */
color = ReadColor(src + x1, srcFormat);
SplitColor(color, srcFormat, &R, &G, &B, NULL, NULL);
Ra = R;
Ga = G;
Ba = B;
ydst[y1] = RGB2Y(R, G, B);
if (x < max_x)
{
/* row 1, pixel 2 */
color = ReadColor(src + x2, srcFormat);
SplitColor(color, srcFormat, &R, &G, &B, NULL, NULL);
Ra += R;
Ga += G;
Ba += B;
ydst[y2] = RGB2Y(R, G, B);
}
if (y < max_y)
{
/* row 2, pixel 1 */
color = ReadColor(src + x3, srcFormat);
SplitColor(color, srcFormat, &R, &G, &B, NULL, NULL);
Ra += R;
Ga += G;
Ba += B;
ydst[y3] = RGB2Y(R, G, B);
if (x < max_x)
{
/* row 2, pixel 2 */
color = ReadColor(src + x4, srcFormat);
SplitColor(color, srcFormat, &R, &G, &B, NULL, NULL);
Ra += R;
Ga += G;
Ba += B;
ydst[y4] = RGB2Y(R, G, B);
}
}
Ra >>= 2;
Ga >>= 2;
Ba >>= 2;
*udst++ = RGB2U(Ra, Ga, Ba);
*vdst++ = RGB2V(Ra, Ga, Ba);
ydst += 2;
src += 2 * bpp;
}
}
return PRIMITIVES_SUCCESS;
}
static pstatus_t general_RGBToYUV420_8u_P3AC4R(
const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
{
switch (srcFormat)
{
case PIXEL_FORMAT_BGRA32:
case PIXEL_FORMAT_BGRX32:
return general_RGBToYUV420_BGRX(pSrc, srcStep, pDst, dstStep, roi);
default:
return general_RGBToYUV420_ANY(pSrc, srcFormat, srcStep, pDst, dstStep, roi);
}
}
static INLINE pstatus_t general_RGBToAVC444YUV_BGRX(
const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
BYTE* pDst1[3], const UINT32 dst1Step[3],
BYTE* pDst2[3], const UINT32 dst2Step[3],
const prim_size_t* roi)
{
/**
* Note:
* Read information in function general_RGBToAVC444YUV_ANY below !
*/
UINT32 x, y, n, numRows, numCols;
BOOL evenRow = TRUE;
BYTE *b1, *b2, *b3, *b4, *b5, *b6, *b7;
const BYTE* pMaxSrc = pSrc + (roi->height - 1) * srcStep;
numRows = (roi->height + 1) & ~1;
numCols = (roi->width + 1) & ~1;
for (y = 0; y < numRows; y++, evenRow = !evenRow)
{
const BYTE* src = y < roi->height ? pSrc + y * srcStep : pMaxSrc;
UINT32 i = y >> 1;
b1 = pDst1[0] + y * dst1Step[0];
if (evenRow)
{
b2 = pDst1[1] + i * dst1Step[1];
b3 = pDst1[2] + i * dst1Step[2];
b6 = pDst2[1] + i * dst2Step[1];
b7 = pDst2[2] + i * dst2Step[2];
}
else
{
n = (i & ~7) + i;
b4 = pDst2[0] + dst2Step[0] * n;
b5 = b4 + 8 * dst2Step[0];
}
for (x = 0; x < numCols; x += 2)
{
BYTE R, G, B, Y1, Y2, U1, U2, V1, V2;
B = src[0];
G = src[1];
R = src[2];
Y1 = Y2 = RGB2Y(R, G, B);
U1 = U2 = RGB2U(R, G, B);
V1 = V2 = RGB2V(R, G, B);
if (x + 1 < roi->width)
{
B = src[4];
G = src[5];
R = src[6];
Y2 = RGB2Y(R, G, B);
U2 = RGB2U(R, G, B);
V2 = RGB2V(R, G, B);
}
*b1++ = Y1;
*b1++ = Y2;
if (evenRow)
{
*b2++ = U1;
*b3++ = V1;
*b6++ = U2;
*b7++ = V2;
}
else
{
*b4++ = U1;
*b4++ = U2;
*b5++ = V1;
*b5++ = V2;
}
src += 8;
}
}
return PRIMITIVES_SUCCESS;
}
static INLINE pstatus_t general_RGBToAVC444YUV_ANY(
const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
BYTE* pDst1[3], const UINT32 dst1Step[3],
BYTE* pDst2[3], const UINT32 dst2Step[3],
const prim_size_t* roi)
{
/**
* Note: According to [MS-RDPEGFX 2.2.4.4 RFX_AVC420_BITMAP_STREAM] the
* width and height of the MPEG-4 AVC/H.264 codec bitstream MUST be aligned
* to a multiple of 16.
* Hence the passed destination YUV420/CHROMA420 buffers must have been
* allocated accordingly !!
*/
/**
* [MS-RDPEGFX 3.3.8.3.2 YUV420p Stream Combination] defines the following "Bx areas":
*
* YUV420 frame (main view):
* B1: From Y444 all pixels
* B2: From U444 all pixels in even rows with even columns
* B3: From V444 all pixels in even rows with even columns
*
* Chroma420 frame (auxillary view):
* B45: From U444 and V444 all pixels from all odd rows
* (The odd U444 and V444 rows must be interleaved in 8-line blocks in B45 !!!)
* B6: From U444 all pixels in even rows with odd columns
* B7: From V444 all pixels in even rows with odd columns
*
* Microsoft's horrible unclear description in MS-RDPEGFX translated to pseudo code looks like this:
*
* for (y = 0; y < fullHeight; y++)
* {
* for (x = 0; x < fullWidth; x++)
* {
* B1[x,y] = Y444[x,y];
* }
* }
*
* for (y = 0; y < halfHeight; y++)
* {
* for (x = 0; x < halfWidth; x++)
* {
* B2[x,y] = U444[2 * x, 2 * y];
* B3[x,y] = V444[2 * x, 2 * y];
* B6[x,y] = U444[2 * x + 1, 2 * y];
* B7[x,y] = V444[2 * x + 1, 2 * y];
* }
* }
*
* for (y = 0; y < halfHeight; y++)
* {
* yU = (y / 8) * 16; // identify first row of correct 8-line U block in B45
* yU += (y % 8); // add offset rows in destination block
* yV = yU + 8; // the corresponding v line is always 8 rows ahead
*
* for (x = 0; x < fullWidth; x++)
* {
* B45[x,yU] = U444[x, 2 * y + 1];
* B45[x,yV] = V444[x, 2 * y + 1];
* }
* }
*
*/
const UINT32 bpp = GetBytesPerPixel(srcFormat);
UINT32 x, y, n, numRows, numCols;
BOOL evenRow = TRUE;
BYTE *b1, *b2, *b3, *b4, *b5, *b6, *b7;
const BYTE* pMaxSrc = pSrc + (roi->height - 1) * srcStep;
numRows = (roi->height + 1) & ~1;
numCols = (roi->width + 1) & ~1;
for (y = 0; y < numRows; y++, evenRow = !evenRow)
{
const BYTE* src = y < roi->height ? pSrc + y * srcStep : pMaxSrc;
UINT32 i = y >> 1;
b1 = pDst1[0] + y * dst1Step[0];
if (evenRow)
{
b2 = pDst1[1] + i * dst1Step[1];
b3 = pDst1[2] + i * dst1Step[2];
b6 = pDst2[1] + i * dst2Step[1];
b7 = pDst2[2] + i * dst2Step[2];
}
else
{
n = (i & ~7) + i;
b4 = pDst2[0] + dst2Step[0] * n;
b5 = b4 + 8 * dst2Step[0];
}
for (x = 0; x < numCols; x += 2)
{
BYTE R, G, B, Y1, Y2, U1, U2, V1, V2;
UINT32 color;
color = ReadColor(src, srcFormat);
SplitColor(color, srcFormat, &R, &G, &B, NULL, NULL);
Y1 = Y2 = RGB2Y(R, G, B);
U1 = U2 = RGB2U(R, G, B);
V1 = V2 = RGB2V(R, G, B);
if (x + 1 < roi->width)
{
color = ReadColor(src + bpp, srcFormat);
SplitColor(color, srcFormat, &R, &G, &B, NULL, NULL);
Y2 = RGB2Y(R, G, B);
U2 = RGB2U(R, G, B);
V2 = RGB2V(R, G, B);
}
*b1++ = Y1;
*b1++ = Y2;
if (evenRow)
{
*b2++ = U1;
*b3++ = V1;
*b6++ = U2;
*b7++ = V2;
}
else
{
*b4++ = U1;
*b4++ = U2;
*b5++ = V1;
*b5++ = V2;
}
src += 2 * bpp;
}
}
return PRIMITIVES_SUCCESS;
}
static INLINE pstatus_t general_RGBToAVC444YUV(
const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
BYTE* pDst1[3], const UINT32 dst1Step[3],
BYTE* pDst2[3], const UINT32 dst2Step[3],
const prim_size_t* roi)
{
switch (srcFormat)
{
case PIXEL_FORMAT_BGRA32:
case PIXEL_FORMAT_BGRX32:
return general_RGBToAVC444YUV_BGRX(pSrc, srcFormat, srcStep, pDst1, dst1Step, pDst2, dst2Step, roi);
default:
return general_RGBToAVC444YUV_ANY(pSrc, srcFormat, srcStep, pDst1, dst1Step, pDst2, dst2Step, roi);
}
return !PRIMITIVES_SUCCESS;
}
void primitives_init_YUV(primitives_t* prims)
{
prims->YUV420ToRGB_8u_P3AC4R = general_YUV420ToRGB_8u_P3AC4R;
prims->YUV444ToRGB_8u_P3AC4R = general_YUV444ToRGB_8u_P3AC4R;
prims->RGBToYUV420_8u_P3AC4R = general_RGBToYUV420_8u_P3AC4R;
prims->RGBToYUV444_8u_P3AC4R = general_RGBToYUV444_8u_P3AC4R;
prims->YUV420CombineToYUV444 = general_YUV420CombineToYUV444;
prims->YUV444SplitToYUV420 = general_YUV444SplitToYUV420;
prims->RGBToAVC444YUV = general_RGBToAVC444YUV;
}