FreeRDP/winpr/libwinpr/crypto/md4.c
2022-10-19 08:17:11 +02:00

267 lines
7.6 KiB
C

/*
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
* MD4 Message-Digest Algorithm (RFC 1320).
*
* Homepage:
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
*
* Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
*
* This software was written by Alexander Peslyak in 2001. No copyright is
* claimed, and the software is hereby placed in the public domain.
* In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
* general public under the following terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* There's ABSOLUTELY NO WARRANTY, express or implied.
*
* (This is a heavily cut-down "BSD license".)
*
* This differs from Colin Plumb's older public domain implementation in that
* no exactly 32-bit integer data type is required (any 32-bit or wider
* unsigned integer data type will do), there's no compile-time endianness
* configuration, and the function prototypes match OpenSSL's. No code from
* Colin Plumb's implementation has been reused; this comment merely compares
* the properties of the two independent implementations.
*
* The primary goals of this implementation are portability and ease of use.
* It is meant to be fast, but not as fast as possible. Some known
* optimizations are not included to reduce source code size and avoid
* compile-time configuration.
*/
#include <string.h>
#include "md4.h"
/*
* The basic MD4 functions.
*
* F and G are optimized compared to their RFC 1320 definitions, with the
* optimization for F borrowed from Colin Plumb's MD5 implementation.
*/
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
/*
* The MD4 transformation for all three rounds.
*/
#define STEP(f, a, b, c, d, x, s) \
(a) += f((b), (c), (d)) + (x); \
(a) = (((a) << (s)) | (((a)&0xffffffff) >> (32 - (s))));
/*
* SET reads 4 input bytes in little-endian byte order and stores them in a
* properly aligned word in host byte order.
*
* The check for little-endian architectures that tolerate unaligned memory
* accesses is just an optimization. Nothing will break if it fails to detect
* a suitable architecture.
*
* Unfortunately, this optimization may be a C strict aliasing rules violation
* if the caller's data buffer has effective type that cannot be aliased by
* winpr_MD4_u32plus. In practice, this problem may occur if these MD4 routines are
* inlined into a calling function, or with future and dangerously advanced
* link-time optimizations. For the time being, keeping these MD4 routines in
* their own translation unit avoids the problem.
*/
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
#define SET(n) (*(winpr_MD4_u32plus*)&ptr[(n)*4])
#define GET(n) SET(n)
#else
#define SET(n) \
(ctx->block[(n)] = (winpr_MD4_u32plus)ptr[(n)*4] | ((winpr_MD4_u32plus)ptr[(n)*4 + 1] << 8) | \
((winpr_MD4_u32plus)ptr[(n)*4 + 2] << 16) | \
((winpr_MD4_u32plus)ptr[(n)*4 + 3] << 24))
#define GET(n) (ctx->block[(n)])
#endif
/*
* This processes one or more 64-byte data blocks, but does NOT update the bit
* counters. There are no alignment requirements.
*/
static const void* body(WINPR_MD4_CTX* ctx, const void* data, unsigned long size)
{
const unsigned char* ptr;
winpr_MD4_u32plus a, b, c, d;
winpr_MD4_u32plus saved_a, saved_b, saved_c, saved_d;
const winpr_MD4_u32plus ac1 = 0x5a827999, ac2 = 0x6ed9eba1;
ptr = (const unsigned char*)data;
a = ctx->a;
b = ctx->b;
c = ctx->c;
d = ctx->d;
do
{
saved_a = a;
saved_b = b;
saved_c = c;
saved_d = d;
/* Round 1 */
STEP(F, a, b, c, d, SET(0), 3)
STEP(F, d, a, b, c, SET(1), 7)
STEP(F, c, d, a, b, SET(2), 11)
STEP(F, b, c, d, a, SET(3), 19)
STEP(F, a, b, c, d, SET(4), 3)
STEP(F, d, a, b, c, SET(5), 7)
STEP(F, c, d, a, b, SET(6), 11)
STEP(F, b, c, d, a, SET(7), 19)
STEP(F, a, b, c, d, SET(8), 3)
STEP(F, d, a, b, c, SET(9), 7)
STEP(F, c, d, a, b, SET(10), 11)
STEP(F, b, c, d, a, SET(11), 19)
STEP(F, a, b, c, d, SET(12), 3)
STEP(F, d, a, b, c, SET(13), 7)
STEP(F, c, d, a, b, SET(14), 11)
STEP(F, b, c, d, a, SET(15), 19)
/* Round 2 */
STEP(G, a, b, c, d, GET(0) + ac1, 3)
STEP(G, d, a, b, c, GET(4) + ac1, 5)
STEP(G, c, d, a, b, GET(8) + ac1, 9)
STEP(G, b, c, d, a, GET(12) + ac1, 13)
STEP(G, a, b, c, d, GET(1) + ac1, 3)
STEP(G, d, a, b, c, GET(5) + ac1, 5)
STEP(G, c, d, a, b, GET(9) + ac1, 9)
STEP(G, b, c, d, a, GET(13) + ac1, 13)
STEP(G, a, b, c, d, GET(2) + ac1, 3)
STEP(G, d, a, b, c, GET(6) + ac1, 5)
STEP(G, c, d, a, b, GET(10) + ac1, 9)
STEP(G, b, c, d, a, GET(14) + ac1, 13)
STEP(G, a, b, c, d, GET(3) + ac1, 3)
STEP(G, d, a, b, c, GET(7) + ac1, 5)
STEP(G, c, d, a, b, GET(11) + ac1, 9)
STEP(G, b, c, d, a, GET(15) + ac1, 13)
/* Round 3 */
STEP(H, a, b, c, d, GET(0) + ac2, 3)
STEP(H, d, a, b, c, GET(8) + ac2, 9)
STEP(H, c, d, a, b, GET(4) + ac2, 11)
STEP(H, b, c, d, a, GET(12) + ac2, 15)
STEP(H, a, b, c, d, GET(2) + ac2, 3)
STEP(H, d, a, b, c, GET(10) + ac2, 9)
STEP(H, c, d, a, b, GET(6) + ac2, 11)
STEP(H, b, c, d, a, GET(14) + ac2, 15)
STEP(H, a, b, c, d, GET(1) + ac2, 3)
STEP(H, d, a, b, c, GET(9) + ac2, 9)
STEP(H, c, d, a, b, GET(5) + ac2, 11)
STEP(H, b, c, d, a, GET(13) + ac2, 15)
STEP(H, a, b, c, d, GET(3) + ac2, 3)
STEP(H, d, a, b, c, GET(11) + ac2, 9)
STEP(H, c, d, a, b, GET(7) + ac2, 11)
STEP(H, b, c, d, a, GET(15) + ac2, 15)
a += saved_a;
b += saved_b;
c += saved_c;
d += saved_d;
ptr += 64;
} while (size -= 64);
ctx->a = a;
ctx->b = b;
ctx->c = c;
ctx->d = d;
return ptr;
}
void winpr_MD4_Init(WINPR_MD4_CTX* ctx)
{
ctx->a = 0x67452301;
ctx->b = 0xefcdab89;
ctx->c = 0x98badcfe;
ctx->d = 0x10325476;
ctx->lo = 0;
ctx->hi = 0;
}
void winpr_MD4_Update(WINPR_MD4_CTX* ctx, const void* data, unsigned long size)
{
winpr_MD4_u32plus saved_lo;
unsigned long used, available;
saved_lo = ctx->lo;
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
ctx->hi++;
ctx->hi += size >> 29;
used = saved_lo & 0x3f;
if (used)
{
available = 64 - used;
if (size < available)
{
memcpy(&ctx->buffer[used], data, size);
return;
}
memcpy(&ctx->buffer[used], data, available);
data = (const unsigned char*)data + available;
size -= available;
body(ctx, ctx->buffer, 64);
}
if (size >= 64)
{
data = body(ctx, data, size & ~(unsigned long)0x3f);
size &= 0x3f;
}
memcpy(ctx->buffer, data, size);
}
#define OUT(dst, src) \
(dst)[0] = (unsigned char)(src); \
(dst)[1] = (unsigned char)((src) >> 8); \
(dst)[2] = (unsigned char)((src) >> 16); \
(dst)[3] = (unsigned char)((src) >> 24);
void winpr_MD4_Final(unsigned char* result, WINPR_MD4_CTX* ctx)
{
unsigned long used, available;
used = ctx->lo & 0x3f;
ctx->buffer[used++] = 0x80;
available = 64 - used;
if (available < 8)
{
memset(&ctx->buffer[used], 0, available);
body(ctx, ctx->buffer, 64);
used = 0;
available = 64;
}
memset(&ctx->buffer[used], 0, available - 8);
ctx->lo <<= 3;
OUT(&ctx->buffer[56], ctx->lo)
OUT(&ctx->buffer[60], ctx->hi)
body(ctx, ctx->buffer, 64);
OUT(&result[0], ctx->a)
OUT(&result[4], ctx->b)
OUT(&result[8], ctx->c)
OUT(&result[12], ctx->d)
memset(ctx, 0, sizeof(*ctx));
}