267 lines
7.6 KiB
C
267 lines
7.6 KiB
C
/*
|
|
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
|
|
* MD4 Message-Digest Algorithm (RFC 1320).
|
|
*
|
|
* Homepage:
|
|
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
|
|
*
|
|
* Author:
|
|
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
|
|
*
|
|
* This software was written by Alexander Peslyak in 2001. No copyright is
|
|
* claimed, and the software is hereby placed in the public domain.
|
|
* In case this attempt to disclaim copyright and place the software in the
|
|
* public domain is deemed null and void, then the software is
|
|
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
|
|
* general public under the following terms:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted.
|
|
*
|
|
* There's ABSOLUTELY NO WARRANTY, express or implied.
|
|
*
|
|
* (This is a heavily cut-down "BSD license".)
|
|
*
|
|
* This differs from Colin Plumb's older public domain implementation in that
|
|
* no exactly 32-bit integer data type is required (any 32-bit or wider
|
|
* unsigned integer data type will do), there's no compile-time endianness
|
|
* configuration, and the function prototypes match OpenSSL's. No code from
|
|
* Colin Plumb's implementation has been reused; this comment merely compares
|
|
* the properties of the two independent implementations.
|
|
*
|
|
* The primary goals of this implementation are portability and ease of use.
|
|
* It is meant to be fast, but not as fast as possible. Some known
|
|
* optimizations are not included to reduce source code size and avoid
|
|
* compile-time configuration.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "md4.h"
|
|
|
|
/*
|
|
* The basic MD4 functions.
|
|
*
|
|
* F and G are optimized compared to their RFC 1320 definitions, with the
|
|
* optimization for F borrowed from Colin Plumb's MD5 implementation.
|
|
*/
|
|
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define G(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
|
|
|
/*
|
|
* The MD4 transformation for all three rounds.
|
|
*/
|
|
#define STEP(f, a, b, c, d, x, s) \
|
|
(a) += f((b), (c), (d)) + (x); \
|
|
(a) = (((a) << (s)) | (((a)&0xffffffff) >> (32 - (s))));
|
|
|
|
/*
|
|
* SET reads 4 input bytes in little-endian byte order and stores them in a
|
|
* properly aligned word in host byte order.
|
|
*
|
|
* The check for little-endian architectures that tolerate unaligned memory
|
|
* accesses is just an optimization. Nothing will break if it fails to detect
|
|
* a suitable architecture.
|
|
*
|
|
* Unfortunately, this optimization may be a C strict aliasing rules violation
|
|
* if the caller's data buffer has effective type that cannot be aliased by
|
|
* winpr_MD4_u32plus. In practice, this problem may occur if these MD4 routines are
|
|
* inlined into a calling function, or with future and dangerously advanced
|
|
* link-time optimizations. For the time being, keeping these MD4 routines in
|
|
* their own translation unit avoids the problem.
|
|
*/
|
|
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
|
|
#define SET(n) (*(winpr_MD4_u32plus*)&ptr[(n)*4])
|
|
#define GET(n) SET(n)
|
|
#else
|
|
#define SET(n) \
|
|
(ctx->block[(n)] = (winpr_MD4_u32plus)ptr[(n)*4] | ((winpr_MD4_u32plus)ptr[(n)*4 + 1] << 8) | \
|
|
((winpr_MD4_u32plus)ptr[(n)*4 + 2] << 16) | \
|
|
((winpr_MD4_u32plus)ptr[(n)*4 + 3] << 24))
|
|
#define GET(n) (ctx->block[(n)])
|
|
#endif
|
|
|
|
/*
|
|
* This processes one or more 64-byte data blocks, but does NOT update the bit
|
|
* counters. There are no alignment requirements.
|
|
*/
|
|
static const void* body(WINPR_MD4_CTX* ctx, const void* data, unsigned long size)
|
|
{
|
|
const unsigned char* ptr;
|
|
winpr_MD4_u32plus a, b, c, d;
|
|
winpr_MD4_u32plus saved_a, saved_b, saved_c, saved_d;
|
|
const winpr_MD4_u32plus ac1 = 0x5a827999, ac2 = 0x6ed9eba1;
|
|
|
|
ptr = (const unsigned char*)data;
|
|
|
|
a = ctx->a;
|
|
b = ctx->b;
|
|
c = ctx->c;
|
|
d = ctx->d;
|
|
|
|
do
|
|
{
|
|
saved_a = a;
|
|
saved_b = b;
|
|
saved_c = c;
|
|
saved_d = d;
|
|
|
|
/* Round 1 */
|
|
STEP(F, a, b, c, d, SET(0), 3)
|
|
STEP(F, d, a, b, c, SET(1), 7)
|
|
STEP(F, c, d, a, b, SET(2), 11)
|
|
STEP(F, b, c, d, a, SET(3), 19)
|
|
STEP(F, a, b, c, d, SET(4), 3)
|
|
STEP(F, d, a, b, c, SET(5), 7)
|
|
STEP(F, c, d, a, b, SET(6), 11)
|
|
STEP(F, b, c, d, a, SET(7), 19)
|
|
STEP(F, a, b, c, d, SET(8), 3)
|
|
STEP(F, d, a, b, c, SET(9), 7)
|
|
STEP(F, c, d, a, b, SET(10), 11)
|
|
STEP(F, b, c, d, a, SET(11), 19)
|
|
STEP(F, a, b, c, d, SET(12), 3)
|
|
STEP(F, d, a, b, c, SET(13), 7)
|
|
STEP(F, c, d, a, b, SET(14), 11)
|
|
STEP(F, b, c, d, a, SET(15), 19)
|
|
|
|
/* Round 2 */
|
|
STEP(G, a, b, c, d, GET(0) + ac1, 3)
|
|
STEP(G, d, a, b, c, GET(4) + ac1, 5)
|
|
STEP(G, c, d, a, b, GET(8) + ac1, 9)
|
|
STEP(G, b, c, d, a, GET(12) + ac1, 13)
|
|
STEP(G, a, b, c, d, GET(1) + ac1, 3)
|
|
STEP(G, d, a, b, c, GET(5) + ac1, 5)
|
|
STEP(G, c, d, a, b, GET(9) + ac1, 9)
|
|
STEP(G, b, c, d, a, GET(13) + ac1, 13)
|
|
STEP(G, a, b, c, d, GET(2) + ac1, 3)
|
|
STEP(G, d, a, b, c, GET(6) + ac1, 5)
|
|
STEP(G, c, d, a, b, GET(10) + ac1, 9)
|
|
STEP(G, b, c, d, a, GET(14) + ac1, 13)
|
|
STEP(G, a, b, c, d, GET(3) + ac1, 3)
|
|
STEP(G, d, a, b, c, GET(7) + ac1, 5)
|
|
STEP(G, c, d, a, b, GET(11) + ac1, 9)
|
|
STEP(G, b, c, d, a, GET(15) + ac1, 13)
|
|
|
|
/* Round 3 */
|
|
STEP(H, a, b, c, d, GET(0) + ac2, 3)
|
|
STEP(H, d, a, b, c, GET(8) + ac2, 9)
|
|
STEP(H, c, d, a, b, GET(4) + ac2, 11)
|
|
STEP(H, b, c, d, a, GET(12) + ac2, 15)
|
|
STEP(H, a, b, c, d, GET(2) + ac2, 3)
|
|
STEP(H, d, a, b, c, GET(10) + ac2, 9)
|
|
STEP(H, c, d, a, b, GET(6) + ac2, 11)
|
|
STEP(H, b, c, d, a, GET(14) + ac2, 15)
|
|
STEP(H, a, b, c, d, GET(1) + ac2, 3)
|
|
STEP(H, d, a, b, c, GET(9) + ac2, 9)
|
|
STEP(H, c, d, a, b, GET(5) + ac2, 11)
|
|
STEP(H, b, c, d, a, GET(13) + ac2, 15)
|
|
STEP(H, a, b, c, d, GET(3) + ac2, 3)
|
|
STEP(H, d, a, b, c, GET(11) + ac2, 9)
|
|
STEP(H, c, d, a, b, GET(7) + ac2, 11)
|
|
STEP(H, b, c, d, a, GET(15) + ac2, 15)
|
|
|
|
a += saved_a;
|
|
b += saved_b;
|
|
c += saved_c;
|
|
d += saved_d;
|
|
|
|
ptr += 64;
|
|
} while (size -= 64);
|
|
|
|
ctx->a = a;
|
|
ctx->b = b;
|
|
ctx->c = c;
|
|
ctx->d = d;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void winpr_MD4_Init(WINPR_MD4_CTX* ctx)
|
|
{
|
|
ctx->a = 0x67452301;
|
|
ctx->b = 0xefcdab89;
|
|
ctx->c = 0x98badcfe;
|
|
ctx->d = 0x10325476;
|
|
|
|
ctx->lo = 0;
|
|
ctx->hi = 0;
|
|
}
|
|
|
|
void winpr_MD4_Update(WINPR_MD4_CTX* ctx, const void* data, unsigned long size)
|
|
{
|
|
winpr_MD4_u32plus saved_lo;
|
|
unsigned long used, available;
|
|
|
|
saved_lo = ctx->lo;
|
|
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
|
|
ctx->hi++;
|
|
ctx->hi += size >> 29;
|
|
|
|
used = saved_lo & 0x3f;
|
|
|
|
if (used)
|
|
{
|
|
available = 64 - used;
|
|
|
|
if (size < available)
|
|
{
|
|
memcpy(&ctx->buffer[used], data, size);
|
|
return;
|
|
}
|
|
|
|
memcpy(&ctx->buffer[used], data, available);
|
|
data = (const unsigned char*)data + available;
|
|
size -= available;
|
|
body(ctx, ctx->buffer, 64);
|
|
}
|
|
|
|
if (size >= 64)
|
|
{
|
|
data = body(ctx, data, size & ~(unsigned long)0x3f);
|
|
size &= 0x3f;
|
|
}
|
|
|
|
memcpy(ctx->buffer, data, size);
|
|
}
|
|
|
|
#define OUT(dst, src) \
|
|
(dst)[0] = (unsigned char)(src); \
|
|
(dst)[1] = (unsigned char)((src) >> 8); \
|
|
(dst)[2] = (unsigned char)((src) >> 16); \
|
|
(dst)[3] = (unsigned char)((src) >> 24);
|
|
|
|
void winpr_MD4_Final(unsigned char* result, WINPR_MD4_CTX* ctx)
|
|
{
|
|
unsigned long used, available;
|
|
|
|
used = ctx->lo & 0x3f;
|
|
|
|
ctx->buffer[used++] = 0x80;
|
|
|
|
available = 64 - used;
|
|
|
|
if (available < 8)
|
|
{
|
|
memset(&ctx->buffer[used], 0, available);
|
|
body(ctx, ctx->buffer, 64);
|
|
used = 0;
|
|
available = 64;
|
|
}
|
|
|
|
memset(&ctx->buffer[used], 0, available - 8);
|
|
|
|
ctx->lo <<= 3;
|
|
OUT(&ctx->buffer[56], ctx->lo)
|
|
OUT(&ctx->buffer[60], ctx->hi)
|
|
|
|
body(ctx, ctx->buffer, 64);
|
|
|
|
OUT(&result[0], ctx->a)
|
|
OUT(&result[4], ctx->b)
|
|
OUT(&result[8], ctx->c)
|
|
OUT(&result[12], ctx->d)
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
}
|