FreeRDP/libfreerdp/core/connection.c

1142 lines
34 KiB
C

/*
* FreeRDP: A Remote Desktop Protocol Implementation
* Connection Sequence
*
* Copyright 2011 Marc-Andre Moreau <marcandre.moreau@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "info.h"
#include "input.h"
#include "connection.h"
#include "transport.h"
#include <winpr/crt.h>
#include <freerdp/error.h>
#include <freerdp/listener.h>
/**
* Connection Sequence\n
* client server\n
* | |\n
* |-----------------------X.224 Connection Request PDU--------------------->|\n
* |<----------------------X.224 Connection Confirm PDU----------------------|\n
* |-------MCS Connect-Initial PDU with GCC Conference Create Request------->|\n
* |<-----MCS Connect-Response PDU with GCC Conference Create Response-------|\n
* |------------------------MCS Erect Domain Request PDU-------------------->|\n
* |------------------------MCS Attach User Request PDU--------------------->|\n
* |<-----------------------MCS Attach User Confirm PDU----------------------|\n
* |------------------------MCS Channel Join Request PDU-------------------->|\n
* |<-----------------------MCS Channel Join Confirm PDU---------------------|\n
* |----------------------------Security Exchange PDU----------------------->|\n
* |-------------------------------Client Info PDU-------------------------->|\n
* |<---------------------License Error PDU - Valid Client-------------------|\n
* |<-----------------------------Demand Active PDU--------------------------|\n
* |------------------------------Confirm Active PDU------------------------>|\n
* |-------------------------------Synchronize PDU-------------------------->|\n
* |---------------------------Control PDU - Cooperate---------------------->|\n
* |------------------------Control PDU - Request Control------------------->|\n
* |--------------------------Persistent Key List PDU(s)-------------------->|\n
* |--------------------------------Font List PDU--------------------------->|\n
* |<------------------------------Synchronize PDU---------------------------|\n
* |<--------------------------Control PDU - Cooperate-----------------------|\n
* |<-----------------------Control PDU - Granted Control--------------------|\n
* |<-------------------------------Font Map PDU-----------------------------|\n
*
*/
/**
*
* Connection Sequence
*
* 1. Connection Initiation: The client initiates the connection by sending the server a
* Class 0 X.224 Connection Request PDU (section 2.2.1.1). The server responds with a
* Class 0 X.224 Connection Confirm PDU (section 2.2.1.2). From this point, all subsequent
* data sent between client and server is wrapped in an X.224 Data Protocol Data Unit (PDU).
*
* 2. Basic Settings Exchange: Basic settings are exchanged between the client and server by
* using the MCS Connect Initial PDU (section 2.2.1.3) and MCS Connect Response PDU (section 2.2.1.4).
* The Connect Initial PDU contains a Generic Conference Control (GCC) Conference Create Request,
* while the Connect Response PDU contains a GCC Conference Create Response. These two GCC packets
* contain concatenated blocks of settings data (such as core data, security data, and network data)
* which are read by client and server.
*
* 3. Channel Connection: The client sends an MCS Erect Domain Request PDU (section 2.2.1.5),
* followed by an MCS Attach User Request PDU (section 2.2.1.6) to attach the primary user identity
* to the MCS domain. The server responds with an MCS Attach User Confirm PDU (section 2.2.1.7)
* containing the User Channel ID. The client then proceeds to join the user channel, the
* input/output (I/O) channel, and all of the static virtual channels (the I/O and static virtual
* channel IDs are obtained from the data embedded in the GCC packets) by using multiple MCS Channel
* Join Request PDUs (section 2.2.1.8). The server confirms each channel with an MCS Channel Join
* Confirm PDU (section 2.2.1.9). (The client only sends a Channel Join Request after it has received
* the Channel Join Confirm for the previously sent request.)
*
* From this point, all subsequent data sent from the client to the server is wrapped in an MCS Send
* Data Request PDU, while data sent from the server to the client is wrapped in an MCS Send Data
* Indication PDU. This is in addition to the data being wrapped by an X.224 Data PDU.
*
* 4. RDP Security Commencement: If Standard RDP Security mechanisms (section 5.3) are being employed and
* encryption is in force (this is determined by examining the data embedded in the GCC Conference Create
* Response packet) then the client sends a Security Exchange PDU (section 2.2.1.10) containing an encrypted
* 32-byte random number to the server. This random number is encrypted with the public key of the server
* as described in section 5.3.4.1 (the server's public key, as well as a 32-byte server-generated random
* number, are both obtained from the data embedded in the GCC Conference Create Response packet). The client
* and server then utilize the two 32-byte random numbers to generate session keys which are used to encrypt
* and validate the integrity of subsequent RDP traffic.
*
* From this point, all subsequent RDP traffic can be encrypted and a security header is included with the
* data if encryption is in force. (The Client Info PDU (section 2.2.1.11) and licensing PDUs ([MS-RDPELE]
* section 2.2.2) are an exception in that they always have a security header). The Security Header follows
* the X.224 and MCS Headers and indicates whether the attached data is encrypted. Even if encryption is in
* force, server-to-client traffic may not always be encrypted, while client-to-server traffic must always be
* encrypted (encryption of licensing PDUs is optional, however).
*
* 5. Secure Settings Exchange: Secure client data (such as the username, password, and auto-reconnect cookie)
* is sent to the server by using the Client Info PDU (section 2.2.1.11).
*
* 6. Optional Connect-Time Auto-Detection: During the optional connect-time auto-detect phase the goal is to
* determine characteristics of the network, such as the round-trip latency time and the bandwidth of the link
* between the server and client. This is accomplished by exchanging a collection of PDUs (specified in section 2.2.1.4)
* over a predetermined period of time with enough data to ensure that the results are statistically relevant.
*
* 7. Licensing: The goal of the licensing exchange is to transfer a license from the server to the client.
* The client stores this license and on subsequent connections sends the license to the server for validation.
* However, in some situations the client may not be issued a license to store. In effect, the packets exchanged
* during this phase of the protocol depend on the licensing mechanisms employed by the server. Within the context
* of this document, it is assumed that the client will not be issued a license to store. For details regarding
* more advanced licensing scenarios that take place during the Licensing Phase, see [MS-RDPELE] section 1.3.
*
* 8. Optional Multitransport Bootstrapping: After the connection has been secured and the Licensing Phase has run
* to completion, the server can choose to initiate multitransport connections ([MS-RDPEMT] section 1.3).
* The Initiate Multitransport Request PDU (section 2.2.15.1) is sent by the server to the client and results
* in the out-of-band creation of a multitransport connection using messages from the RDP-UDP, TLS, DTLS, and
* multitransport protocols ([MS-RDPEMT] section 1.3.1).
*
* 9. Capabilities Exchange: The server sends the set of capabilities it supports to the client in a Demand Active PDU
* (section 2.2.1.13.1). The client responds with its capabilities by sending a Confirm Active PDU (section 2.2.1.13.2).
*
* 10. Connection Finalization: The client and server exchange PDUs to finalize the connection details. The client-to-server
* PDUs sent during this phase have no dependencies on any of the server-to-client PDUs; they may be sent as a single batch,
* provided that sequencing is maintained.
*
* - The Client Synchronize PDU (section 2.2.1.14) is sent after transmitting the Confirm Active PDU.
* - The Client Control (Cooperate) PDU (section 2.2.1.15) is sent after transmitting the Client Synchronize PDU.
* - The Client Control (Request Control) PDU (section 2.2.1.16) is sent after transmitting the Client Control (Cooperate) PDU.
* - The optional Persistent Key List PDUs (section 2.2.1.17) are sent after transmitting the Client Control (Request Control) PDU.
* - The Font List PDU (section 2.2.1.18) is sent after transmitting the Persistent Key List PDUs or, if the Persistent Key List
* PDUs were not sent, it is sent after transmitting the Client Control (Request Control) PDU (section 2.2.1.16).
*
* The server-to-client PDUs sent during the Connection Finalization Phase have dependencies on the client-to-server PDUs.
*
* - The optional Monitor Layout PDU (section 2.2.12.1) has no dependency on any client-to-server PDUs and is sent after the Demand Active PDU.
* - The Server Synchronize PDU (section 2.2.1.19) is sent in response to the Confirm Active PDU.
* - The Server Control (Cooperate) PDU (section 2.2.1.20) is sent after transmitting the Server Synchronize PDU.
* - The Server Control (Granted Control) PDU (section 2.2.1.21) is sent in response to the Client Control (Request Control) PDU.
* - The Font Map PDU (section 2.2.1.22) is sent in response to the Font List PDU.
*
* Once the client has sent the Confirm Active PDU, it can start sending mouse and keyboard input to the server, and upon receipt
* of the Font List PDU the server can start sending graphics output to the client.
*
* Besides input and graphics data, other data that can be exchanged between client and server after the connection has been
* finalized includes connection management information and virtual channel messages (exchanged between client-side plug-ins
* and server-side applications).
*/
/**
* Establish RDP Connection based on the settings given in the 'rdp' parameter.
* @msdn{cc240452}
* @param rdp RDP module
* @return true if the connection succeeded. FALSE otherwise.
*/
BOOL rdp_client_connect(rdpRdp* rdp)
{
rdpSettings* settings = rdp->settings;
if (rdp->settingsCopy)
{
freerdp_settings_free(rdp->settingsCopy);
rdp->settingsCopy = NULL;
}
rdp->settingsCopy = freerdp_settings_clone(settings);
nego_init(rdp->nego);
nego_set_target(rdp->nego, settings->ServerHostname, settings->ServerPort);
if (settings->GatewayEnabled)
{
char* user = NULL;
char* domain = NULL;
char* cookie = NULL;
int user_length = 0;
int domain_length = 0;
int cookie_length = 0;
if (settings->Username)
{
user = settings->Username;
user_length = strlen(settings->Username);
}
if (settings->Domain)
domain = settings->Domain;
else
domain = settings->ComputerName;
domain_length = strlen(domain);
cookie_length = domain_length + 1 + user_length;
cookie = (char*) malloc(cookie_length + 1);
CopyMemory(cookie, domain, domain_length);
CharUpperBuffA(cookie, domain_length);
cookie[domain_length] = '\\';
if (settings->Username)
CopyMemory(&cookie[domain_length + 1], user, user_length);
cookie[cookie_length] = '\0';
nego_set_cookie(rdp->nego, cookie);
free(cookie);
}
else
{
nego_set_cookie(rdp->nego, settings->Username);
}
nego_set_send_preconnection_pdu(rdp->nego, settings->SendPreconnectionPdu);
nego_set_preconnection_id(rdp->nego, settings->PreconnectionId);
nego_set_preconnection_blob(rdp->nego, settings->PreconnectionBlob);
nego_set_negotiation_enabled(rdp->nego, settings->NegotiateSecurityLayer);
nego_set_restricted_admin_mode_required(rdp->nego, settings->RestrictedAdminModeRequired);
nego_enable_rdp(rdp->nego, settings->RdpSecurity);
nego_enable_tls(rdp->nego, settings->TlsSecurity);
nego_enable_nla(rdp->nego, settings->NlaSecurity);
nego_enable_ext(rdp->nego, settings->ExtSecurity);
if (settings->MstscCookieMode)
settings->CookieMaxLength = MSTSC_COOKIE_MAX_LENGTH;
nego_set_cookie_max_length(rdp->nego, settings->CookieMaxLength);
if (settings->LoadBalanceInfo)
nego_set_routing_token(rdp->nego, settings->LoadBalanceInfo, settings->LoadBalanceInfoLength);
if (!nego_connect(rdp->nego))
{
fprintf(stderr, "Error: protocol security negotiation or connection failure\n");
return FALSE;
}
if ((rdp->nego->selected_protocol & PROTOCOL_TLS) || (rdp->nego->selected_protocol == PROTOCOL_RDP))
{
if ((settings->Username != NULL) && ((settings->Password != NULL) ||
(settings->RedirectionPassword != NULL && settings->RedirectionPasswordLength > 0)))
settings->AutoLogonEnabled = TRUE;
}
rdp_set_blocking_mode(rdp, FALSE);
rdp_client_transition_to_state(rdp, CONNECTION_STATE_NEGO);
rdp->finalize_sc_pdus = 0;
if (!mcs_send_connect_initial(rdp->mcs))
{
if (!connectErrorCode)
{
connectErrorCode = MCSCONNECTINITIALERROR;
}
fprintf(stderr, "Error: unable to send MCS Connect Initial\n");
return FALSE;
}
while (rdp->state != CONNECTION_STATE_ACTIVE)
{
if (rdp_check_fds(rdp) < 0)
return FALSE;
}
return TRUE;
}
BOOL rdp_client_disconnect(rdpRdp* rdp)
{
return transport_disconnect(rdp->transport);
}
BOOL rdp_client_redirect(rdpRdp* rdp)
{
BOOL status;
rdpSettings* settings = rdp->settings;
rdp_client_disconnect(rdp);
rdp_reset(rdp);
rdp_redirection_apply_settings(rdp);
if (settings->RedirectionFlags & LB_LOAD_BALANCE_INFO)
{
nego_set_routing_token(rdp->nego, settings->LoadBalanceInfo, settings->LoadBalanceInfoLength);
}
else
{
if (settings->RedirectionFlags & LB_TARGET_NET_ADDRESS)
{
free(settings->ServerHostname);
settings->ServerHostname = _strdup(settings->TargetNetAddress);
}
else if (settings->RedirectionFlags & LB_TARGET_FQDN)
{
free(settings->ServerHostname);
settings->ServerHostname = _strdup(settings->RedirectionTargetFQDN);
}
else if (settings->RedirectionFlags & LB_TARGET_NETBIOS_NAME)
{
free(settings->ServerHostname);
settings->ServerHostname = _strdup(settings->RedirectionTargetNetBiosName);
}
}
if (settings->RedirectionFlags & LB_USERNAME)
{
free(settings->Username);
settings->Username = _strdup(settings->RedirectionUsername);
}
if (settings->RedirectionFlags & LB_DOMAIN)
{
free(settings->Domain);
settings->Domain = _strdup(settings->RedirectionDomain);
}
status = rdp_client_connect(rdp);
return status;
}
BOOL rdp_client_reconnect(rdpRdp* rdp)
{
int i;
transport_disconnect(rdp->transport);
mcs_free(rdp->mcs);
nego_free(rdp->nego);
license_free(rdp->license);
transport_free(rdp->transport);
/* Reset virtual channel status */
for (i = 0; i < rdp->settings->ChannelCount; i++)
{
rdp->settings->ChannelDefArray[i].joined = FALSE;
}
rdp->transport = transport_new(rdp->settings);
rdp->license = license_new(rdp);
rdp->nego = nego_new(rdp->transport);
rdp->mcs = mcs_new(rdp->transport);
rdp->transport->layer = TRANSPORT_LAYER_TCP;
return rdp_client_connect(rdp);
}
static BYTE fips_ivec[8] = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF };
static BOOL rdp_client_establish_keys(rdpRdp* rdp)
{
BYTE* mod;
BYTE* exp;
wStream* s;
UINT32 length;
UINT32 key_len;
BYTE crypt_client_random[256 + 8];
if (!rdp->settings->DisableEncryption)
{
/* no RDP encryption */
return TRUE;
}
/* encrypt client random */
if (rdp->settings->ClientRandom)
free(rdp->settings->ClientRandom);
rdp->settings->ClientRandom = malloc(CLIENT_RANDOM_LENGTH);
if (!rdp->settings->ClientRandom)
return FALSE;
ZeroMemory(crypt_client_random, sizeof(crypt_client_random));
crypto_nonce(rdp->settings->ClientRandom, CLIENT_RANDOM_LENGTH);
key_len = rdp->settings->RdpServerCertificate->cert_info.ModulusLength;
mod = rdp->settings->RdpServerCertificate->cert_info.Modulus;
exp = rdp->settings->RdpServerCertificate->cert_info.exponent;
crypto_rsa_public_encrypt(rdp->settings->ClientRandom, CLIENT_RANDOM_LENGTH, key_len, mod, exp, crypt_client_random);
/* send crypt client random to server */
length = RDP_PACKET_HEADER_MAX_LENGTH + RDP_SECURITY_HEADER_LENGTH + 4 + key_len + 8;
s = Stream_New(NULL, length);
rdp_write_header(rdp, s, length, MCS_GLOBAL_CHANNEL_ID);
rdp_write_security_header(s, SEC_EXCHANGE_PKT);
length = key_len + 8;
Stream_Write_UINT32(s, length);
Stream_Write(s, crypt_client_random, length);
Stream_SealLength(s);
if (transport_write(rdp->mcs->transport, s) < 0)
{
return FALSE;
}
Stream_Free(s, TRUE);
/* now calculate encrypt / decrypt and update keys */
if (!security_establish_keys(rdp->settings->ClientRandom, rdp))
{
return FALSE;
}
rdp->do_crypt = TRUE;
if (rdp->settings->SaltedChecksum)
rdp->do_secure_checksum = TRUE;
if (rdp->settings->EncryptionMethods == ENCRYPTION_METHOD_FIPS)
{
rdp->fips_encrypt = crypto_des3_encrypt_init(rdp->fips_encrypt_key, fips_ivec);
rdp->fips_decrypt = crypto_des3_decrypt_init(rdp->fips_decrypt_key, fips_ivec);
rdp->fips_hmac = crypto_hmac_new();
return TRUE;
}
rdp->rc4_decrypt_key = crypto_rc4_init(rdp->decrypt_key, rdp->rc4_key_len);
rdp->rc4_encrypt_key = crypto_rc4_init(rdp->encrypt_key, rdp->rc4_key_len);
return TRUE;
}
BOOL rdp_server_establish_keys(rdpRdp* rdp, wStream* s)
{
BYTE client_random[64]; /* Should be only 32 after successful decryption, but on failure might take up to 64 bytes. */
BYTE crypt_client_random[256 + 8];
UINT32 rand_len, key_len;
UINT16 channel_id, length, sec_flags;
BYTE* mod;
BYTE* priv_exp;
if (!rdp->settings->DisableEncryption)
{
/* No RDP Security. */
return TRUE;
}
if (!rdp_read_header(rdp, s, &length, &channel_id))
{
fprintf(stderr, "rdp_server_establish_keys: invalid RDP header\n");
return FALSE;
}
if (!rdp_read_security_header(s, &sec_flags))
return FALSE;
if ((sec_flags & SEC_EXCHANGE_PKT) == 0)
{
fprintf(stderr, "rdp_server_establish_keys: missing SEC_EXCHANGE_PKT in security header\n");
return FALSE;
}
if (Stream_GetRemainingLength(s) < 4)
return FALSE;
Stream_Read_UINT32(s, rand_len);
if (Stream_GetRemainingLength(s) < rand_len + 8) /* include 8 bytes of padding */
return FALSE;
key_len = rdp->settings->RdpServerRsaKey->ModulusLength;
if (rand_len != key_len + 8)
{
fprintf(stderr, "rdp_server_establish_keys: invalid encrypted client random length\n");
return FALSE;
}
ZeroMemory(crypt_client_random, sizeof(crypt_client_random));
Stream_Read(s, crypt_client_random, rand_len);
/* 8 zero bytes of padding */
Stream_Seek(s, 8);
mod = rdp->settings->RdpServerRsaKey->Modulus;
priv_exp = rdp->settings->RdpServerRsaKey->PrivateExponent;
crypto_rsa_private_decrypt(crypt_client_random, rand_len - 8, key_len, mod, priv_exp, client_random);
/* now calculate encrypt / decrypt and update keys */
if (!security_establish_keys(client_random, rdp))
{
return FALSE;
}
rdp->do_crypt = TRUE;
if (rdp->settings->SaltedChecksum)
rdp->do_secure_checksum = TRUE;
if (rdp->settings->EncryptionMethods == ENCRYPTION_METHOD_FIPS)
{
rdp->fips_encrypt = crypto_des3_encrypt_init(rdp->fips_encrypt_key, fips_ivec);
rdp->fips_decrypt = crypto_des3_decrypt_init(rdp->fips_decrypt_key, fips_ivec);
rdp->fips_hmac = crypto_hmac_new();
return TRUE;
}
rdp->rc4_decrypt_key = crypto_rc4_init(rdp->decrypt_key, rdp->rc4_key_len);
rdp->rc4_encrypt_key = crypto_rc4_init(rdp->encrypt_key, rdp->rc4_key_len);
return TRUE;
}
BOOL rdp_client_connect_mcs_connect_response(rdpRdp* rdp, wStream* s)
{
if (!mcs_recv_connect_response(rdp->mcs, s))
{
fprintf(stderr, "rdp_client_connect_mcs_connect_response: mcs_recv_connect_response failed\n");
return FALSE;
}
if (!mcs_send_erect_domain_request(rdp->mcs))
return FALSE;
if (!mcs_send_attach_user_request(rdp->mcs))
return FALSE;
rdp_client_transition_to_state(rdp, CONNECTION_STATE_MCS_ATTACH_USER);
return TRUE;
}
BOOL rdp_client_connect_mcs_attach_user_confirm(rdpRdp* rdp, wStream* s)
{
if (!mcs_recv_attach_user_confirm(rdp->mcs, s))
return FALSE;
if (!mcs_send_channel_join_request(rdp->mcs, rdp->mcs->user_id))
return FALSE;
rdp_client_transition_to_state(rdp, CONNECTION_STATE_MCS_CHANNEL_JOIN);
return TRUE;
}
BOOL rdp_client_connect_mcs_channel_join_confirm(rdpRdp* rdp, wStream* s)
{
int i;
UINT16 channel_id;
BOOL all_joined = TRUE;
if (!mcs_recv_channel_join_confirm(rdp->mcs, s, &channel_id))
return FALSE;
if (!rdp->mcs->user_channel_joined)
{
if (channel_id != rdp->mcs->user_id)
return FALSE;
rdp->mcs->user_channel_joined = TRUE;
if (!mcs_send_channel_join_request(rdp->mcs, MCS_GLOBAL_CHANNEL_ID))
return FALSE;
}
else if (!rdp->mcs->global_channel_joined)
{
if (channel_id != MCS_GLOBAL_CHANNEL_ID)
return FALSE;
rdp->mcs->global_channel_joined = TRUE;
if (rdp->mcs->message_channel_id != 0)
{
if (!mcs_send_channel_join_request(rdp->mcs, rdp->mcs->message_channel_id))
return FALSE;
all_joined = FALSE;
}
else
{
if (rdp->settings->ChannelCount > 0)
{
if (!mcs_send_channel_join_request(rdp->mcs, rdp->settings->ChannelDefArray[0].ChannelId))
return FALSE;
all_joined = FALSE;
}
}
}
else if ((rdp->mcs->message_channel_id != 0) && !rdp->mcs->message_channel_joined)
{
if (channel_id != rdp->mcs->message_channel_id)
return FALSE;
rdp->mcs->message_channel_joined = TRUE;
if (rdp->settings->ChannelCount > 0)
{
if (!mcs_send_channel_join_request(rdp->mcs, rdp->settings->ChannelDefArray[0].ChannelId))
return FALSE;
all_joined = FALSE;
}
}
else
{
for (i = 0; i < rdp->settings->ChannelCount; i++)
{
if (rdp->settings->ChannelDefArray[i].joined)
continue;
if (rdp->settings->ChannelDefArray[i].ChannelId != channel_id)
return FALSE;
rdp->settings->ChannelDefArray[i].joined = TRUE;
break;
}
if (i + 1 < rdp->settings->ChannelCount)
{
if (!mcs_send_channel_join_request(rdp->mcs, rdp->settings->ChannelDefArray[i + 1].ChannelId))
return FALSE;
all_joined = FALSE;
}
}
if (rdp->mcs->user_channel_joined && rdp->mcs->global_channel_joined && all_joined)
{
if (!rdp_client_establish_keys(rdp))
return FALSE;
if (!rdp_send_client_info(rdp))
return FALSE;
rdp_client_transition_to_state(rdp, CONNECTION_STATE_LICENSING);
}
return TRUE;
}
BOOL rdp_client_connect_auto_detect(rdpRdp* rdp, wStream *s)
{
BYTE* mark;
UINT16 length;
UINT16 channelId;
/* If the MCS message channel has been joined... */
if (rdp->mcs->message_channel_id != 0)
{
/* Process any MCS message channel PDUs. */
Stream_GetPointer(s, mark);
if (rdp_read_header(rdp, s, &length, &channelId))
{
if (channelId == rdp->mcs->message_channel_id)
{
if (rdp_recv_message_channel_pdu(rdp, s) == 0)
return TRUE;
}
}
Stream_SetPointer(s, mark);
}
return FALSE;
}
int rdp_client_connect_license(rdpRdp* rdp, wStream* s)
{
int status;
status = license_recv(rdp->license, s);
if (status < 0)
return status;
if (rdp->license->state == LICENSE_STATE_ABORTED)
{
fprintf(stderr, "license connection sequence aborted.\n");
return -1;
}
if (rdp->license->state == LICENSE_STATE_COMPLETED)
{
rdp_client_transition_to_state(rdp, CONNECTION_STATE_CAPABILITIES_EXCHANGE);
}
return 0;
}
int rdp_client_connect_demand_active(rdpRdp* rdp, wStream* s)
{
BYTE* mark;
UINT16 width;
UINT16 height;
width = rdp->settings->DesktopWidth;
height = rdp->settings->DesktopHeight;
Stream_GetPointer(s, mark);
if (!rdp_recv_demand_active(rdp, s))
{
UINT16 channelId;
Stream_SetPointer(s, mark);
rdp_recv_get_active_header(rdp, s, &channelId);
/* Was Stream_Seek(s, RDP_PACKET_HEADER_MAX_LENGTH);
* but the headers aren't always that length,
* so that could result in a bad offset.
*/
return rdp_recv_out_of_sequence_pdu(rdp, s);
}
if (rdp->disconnect)
return 0;
if (!rdp_send_confirm_active(rdp))
return -1;
input_register_client_callbacks(rdp->input);
/**
* The server may request a different desktop size during Deactivation-Reactivation sequence.
* In this case, the UI should be informed and do actual window resizing at this point.
*/
if (width != rdp->settings->DesktopWidth || height != rdp->settings->DesktopHeight)
{
IFCALL(rdp->update->DesktopResize, rdp->update->context);
}
rdp_client_transition_to_state(rdp, CONNECTION_STATE_FINALIZATION);
return rdp_client_connect_finalize(rdp);
}
int rdp_client_connect_finalize(rdpRdp* rdp)
{
/**
* [MS-RDPBCGR] 1.3.1.1 - 8.
* The client-to-server PDUs sent during this phase have no dependencies on any of the server-to-
* client PDUs; they may be sent as a single batch, provided that sequencing is maintained.
*/
if (!rdp_send_client_synchronize_pdu(rdp))
return -1;
if (!rdp_send_client_control_pdu(rdp, CTRLACTION_COOPERATE))
return -1;
if (!rdp_send_client_control_pdu(rdp, CTRLACTION_REQUEST_CONTROL))
return -1;
/**
* [MS-RDPBCGR] 2.2.1.17
* Client persistent key list must be sent if a bitmap is
* stored in persistent bitmap cache or the server has advertised support for bitmap
* host cache and a deactivation reactivation sequence is *not* in progress.
*/
if (!rdp->deactivation_reactivation && rdp->settings->BitmapCachePersistEnabled)
{
if (!rdp_send_client_persistent_key_list_pdu(rdp))
return -1;
}
if (!rdp_send_client_font_list_pdu(rdp, FONTLIST_FIRST | FONTLIST_LAST))
return -1;
return 0;
}
int rdp_client_transition_to_state(rdpRdp* rdp, int state)
{
int status = 0;
switch (state)
{
case CONNECTION_STATE_INITIAL:
rdp->state = CONNECTION_STATE_INITIAL;
break;
case CONNECTION_STATE_NEGO:
rdp->state = CONNECTION_STATE_NEGO;
break;
case CONNECTION_STATE_MCS_CONNECT:
rdp->state = CONNECTION_STATE_MCS_CONNECT;
break;
case CONNECTION_STATE_MCS_ERECT_DOMAIN:
rdp->state = CONNECTION_STATE_MCS_ERECT_DOMAIN;
break;
case CONNECTION_STATE_MCS_ATTACH_USER:
rdp->state = CONNECTION_STATE_MCS_ATTACH_USER;
break;
case CONNECTION_STATE_MCS_CHANNEL_JOIN:
rdp->state = CONNECTION_STATE_MCS_CHANNEL_JOIN;
break;
case CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT:
rdp->state = CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT;
break;
case CONNECTION_STATE_SECURE_SETTINGS_EXCHANGE:
rdp->state = CONNECTION_STATE_SECURE_SETTINGS_EXCHANGE;
break;
case CONNECTION_STATE_CONNECT_TIME_AUTO_DETECT:
rdp->state = CONNECTION_STATE_CONNECT_TIME_AUTO_DETECT;
break;
case CONNECTION_STATE_LICENSING:
rdp->state = CONNECTION_STATE_LICENSING;
break;
case CONNECTION_STATE_MULTITRANSPORT_BOOTSTRAPPING:
rdp->state = CONNECTION_STATE_MULTITRANSPORT_BOOTSTRAPPING;
break;
case CONNECTION_STATE_CAPABILITIES_EXCHANGE:
rdp->state = CONNECTION_STATE_CAPABILITIES_EXCHANGE;
break;
case CONNECTION_STATE_FINALIZATION:
rdp->state = CONNECTION_STATE_FINALIZATION;
update_reset_state(rdp->update);
rdp->finalize_sc_pdus = 0;
break;
case CONNECTION_STATE_ACTIVE:
rdp->state = CONNECTION_STATE_ACTIVE;
break;
default:
status = -1;
break;
}
return status;
}
BOOL rdp_server_accept_nego(rdpRdp* rdp, wStream* s)
{
BOOL status;
rdpSettings* settings = rdp->settings;
transport_set_blocking_mode(rdp->transport, TRUE);
if (!nego_read_request(rdp->nego, s))
return FALSE;
rdp->nego->selected_protocol = 0;
fprintf(stderr, "Client Security: NLA:%d TLS:%d RDP:%d\n",
(rdp->nego->requested_protocols & PROTOCOL_NLA) ? 1 : 0,
(rdp->nego->requested_protocols & PROTOCOL_TLS) ? 1 : 0,
(rdp->nego->requested_protocols == PROTOCOL_RDP) ? 1: 0);
fprintf(stderr, "Server Security: NLA:%d TLS:%d RDP:%d\n",
settings->NlaSecurity, settings->TlsSecurity, settings->RdpSecurity);
if ((settings->NlaSecurity) && (rdp->nego->requested_protocols & PROTOCOL_NLA))
{
rdp->nego->selected_protocol = PROTOCOL_NLA;
}
else if ((settings->TlsSecurity) && (rdp->nego->requested_protocols & PROTOCOL_TLS))
{
rdp->nego->selected_protocol = PROTOCOL_TLS;
}
else if ((settings->RdpSecurity) && (rdp->nego->selected_protocol == PROTOCOL_RDP))
{
rdp->nego->selected_protocol = PROTOCOL_RDP;
}
else
{
fprintf(stderr, "Protocol security negotiation failure\n");
}
fprintf(stderr, "Negotiated Security: NLA:%d TLS:%d RDP:%d\n",
(rdp->nego->selected_protocol & PROTOCOL_NLA) ? 1 : 0,
(rdp->nego->selected_protocol & PROTOCOL_TLS) ? 1 : 0,
(rdp->nego->selected_protocol == PROTOCOL_RDP) ? 1: 0);
if (!nego_send_negotiation_response(rdp->nego))
return FALSE;
status = FALSE;
if (rdp->nego->selected_protocol & PROTOCOL_NLA)
status = transport_accept_nla(rdp->transport);
else if (rdp->nego->selected_protocol & PROTOCOL_TLS)
status = transport_accept_tls(rdp->transport);
else if (rdp->nego->selected_protocol == PROTOCOL_RDP) /* 0 */
status = transport_accept_rdp(rdp->transport);
if (!status)
return FALSE;
transport_set_blocking_mode(rdp->transport, FALSE);
rdp_server_transition_to_state(rdp, CONNECTION_STATE_NEGO);
return TRUE;
}
BOOL rdp_server_accept_mcs_connect_initial(rdpRdp* rdp, wStream* s)
{
int i;
if (!mcs_recv_connect_initial(rdp->mcs, s))
return FALSE;
fprintf(stderr, "Accepted client: %s\n", rdp->settings->ClientHostname);
fprintf(stderr, "Accepted channels:");
for (i = 0; i < rdp->settings->ChannelCount; i++)
{
fprintf(stderr, " %s", rdp->settings->ChannelDefArray[i].Name);
}
fprintf(stderr, "\n");
if (!mcs_send_connect_response(rdp->mcs))
return FALSE;
rdp_server_transition_to_state(rdp, CONNECTION_STATE_MCS_CONNECT);
return TRUE;
}
BOOL rdp_server_accept_mcs_erect_domain_request(rdpRdp* rdp, wStream* s)
{
if (!mcs_recv_erect_domain_request(rdp->mcs, s))
return FALSE;
rdp_server_transition_to_state(rdp, CONNECTION_STATE_MCS_ERECT_DOMAIN);
return TRUE;
}
BOOL rdp_server_accept_mcs_attach_user_request(rdpRdp* rdp, wStream* s)
{
if (!mcs_recv_attach_user_request(rdp->mcs, s))
return FALSE;
if (!mcs_send_attach_user_confirm(rdp->mcs))
return FALSE;
rdp_server_transition_to_state(rdp, CONNECTION_STATE_MCS_ATTACH_USER);
return TRUE;
}
BOOL rdp_server_accept_mcs_channel_join_request(rdpRdp* rdp, wStream* s)
{
int i;
UINT16 channel_id;
BOOL all_joined = TRUE;
if (!mcs_recv_channel_join_request(rdp->mcs, s, &channel_id))
return FALSE;
if (!mcs_send_channel_join_confirm(rdp->mcs, channel_id))
return FALSE;
if (channel_id == rdp->mcs->user_id)
rdp->mcs->user_channel_joined = TRUE;
else if (channel_id == MCS_GLOBAL_CHANNEL_ID)
rdp->mcs->global_channel_joined = TRUE;
for (i = 0; i < rdp->settings->ChannelCount; i++)
{
if (rdp->settings->ChannelDefArray[i].ChannelId == channel_id)
rdp->settings->ChannelDefArray[i].joined = TRUE;
if (!rdp->settings->ChannelDefArray[i].joined)
all_joined = FALSE;
}
if ((rdp->mcs->user_channel_joined) && (rdp->mcs->global_channel_joined) && all_joined)
{
rdp_server_transition_to_state(rdp, CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT);
}
return TRUE;
}
BOOL rdp_server_accept_confirm_active(rdpRdp* rdp, wStream* s)
{
if (rdp->state != CONNECTION_STATE_CAPABILITIES_EXCHANGE)
return FALSE;
if (!rdp_recv_confirm_active(rdp, s))
return FALSE;
rdp_server_transition_to_state(rdp, CONNECTION_STATE_FINALIZATION);
if (!rdp_send_server_synchronize_pdu(rdp))
return FALSE;
if (!rdp_send_server_control_cooperate_pdu(rdp))
return FALSE;
return TRUE;
}
BOOL rdp_server_reactivate(rdpRdp* rdp)
{
if (!rdp_send_deactivate_all(rdp))
return FALSE;
rdp_server_transition_to_state(rdp, CONNECTION_STATE_CAPABILITIES_EXCHANGE);
if (!rdp_send_demand_active(rdp))
return FALSE;
rdp->AwaitCapabilities = TRUE;
return TRUE;
}
int rdp_server_transition_to_state(rdpRdp* rdp, int state)
{
int status = 0;
freerdp_peer* client = NULL;
if (rdp->state >= CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT)
client = rdp->context->peer;
if (rdp->state < CONNECTION_STATE_ACTIVE)
{
if (client)
client->activated = FALSE;
}
switch (state)
{
case CONNECTION_STATE_INITIAL:
rdp->state = CONNECTION_STATE_INITIAL;
break;
case CONNECTION_STATE_NEGO:
rdp->state = CONNECTION_STATE_NEGO;
break;
case CONNECTION_STATE_MCS_CONNECT:
rdp->state = CONNECTION_STATE_MCS_CONNECT;
break;
case CONNECTION_STATE_MCS_ERECT_DOMAIN:
rdp->state = CONNECTION_STATE_MCS_ERECT_DOMAIN;
break;
case CONNECTION_STATE_MCS_ATTACH_USER:
rdp->state = CONNECTION_STATE_MCS_ATTACH_USER;
break;
case CONNECTION_STATE_MCS_CHANNEL_JOIN:
rdp->state = CONNECTION_STATE_MCS_CHANNEL_JOIN;
break;
case CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT:
rdp->state = CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT;
break;
case CONNECTION_STATE_SECURE_SETTINGS_EXCHANGE:
rdp->state = CONNECTION_STATE_SECURE_SETTINGS_EXCHANGE;
break;
case CONNECTION_STATE_CONNECT_TIME_AUTO_DETECT:
rdp->state = CONNECTION_STATE_CONNECT_TIME_AUTO_DETECT;
break;
case CONNECTION_STATE_LICENSING:
rdp->state = CONNECTION_STATE_LICENSING;
break;
case CONNECTION_STATE_MULTITRANSPORT_BOOTSTRAPPING:
rdp->state = CONNECTION_STATE_MULTITRANSPORT_BOOTSTRAPPING;
break;
case CONNECTION_STATE_CAPABILITIES_EXCHANGE:
rdp->state = CONNECTION_STATE_CAPABILITIES_EXCHANGE;
rdp->AwaitCapabilities = FALSE;
break;
case CONNECTION_STATE_FINALIZATION:
rdp->state = CONNECTION_STATE_FINALIZATION;
rdp->finalize_sc_pdus = 0;
break;
case CONNECTION_STATE_ACTIVE:
rdp->state = CONNECTION_STATE_ACTIVE;
update_reset_state(rdp->update);
if (client)
{
if (!client->connected)
{
/**
* PostConnect should only be called once and should not
* be called after a reactivation sequence.
*/
IFCALLRET(client->PostConnect, client->connected, client);
if (!client->connected)
return -1;
}
IFCALLRET(client->Activate, client->activated, client);
if (!client->activated)
return -1;
}
break;
default:
status = -1;
break;
}
return status;
}