FreeRDP/libfreerdp-codec/rfx_rlgr.c
2011-10-02 20:28:20 -04:00

442 lines
9.8 KiB
C

/**
* FreeRDP: A Remote Desktop Protocol client.
* RemoteFX Codec Library - RLGR
*
* Copyright 2011 Vic Lee
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* This implementation of RLGR refers to
* [MS-RDPRFX] 3.1.8.1.7.3 RLGR1/RLGR3 Pseudocode
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <freerdp/utils/memory.h>
#include "rfx_bitstream.h"
#include "rfx_rlgr.h"
/* Constants used within the RLGR1/RLGR3 algorithm */
#define KPMAX (80) /* max value for kp or krp */
#define LSGR (3) /* shift count to convert kp to k */
#define UP_GR (4) /* increase in kp after a zero run in RL mode */
#define DN_GR (6) /* decrease in kp after a nonzero symbol in RL mode */
#define UQ_GR (3) /* increase in kp after nonzero symbol in GR mode */
#define DQ_GR (3) /* decrease in kp after zero symbol in GR mode */
/* Gets (returns) the next nBits from the bitstream */
#define GetBits(nBits, r) rfx_bitstream_get_bits(bs, nBits, r)
/* From current output pointer, write "value", check and update buffer_size */
#define WriteValue(value) \
{ \
if (buffer_size > 0) \
*dst++ = (value); \
buffer_size--; \
}
/* From current output pointer, write next nZeroes terms with value 0, check and update buffer_size */
#define WriteZeroes(nZeroes) \
{ \
int nZeroesWritten = (nZeroes); \
if (nZeroesWritten > buffer_size) \
nZeroesWritten = buffer_size; \
if (nZeroesWritten > 0) \
{ \
memset(dst, 0, nZeroesWritten * sizeof(sint16)); \
dst += nZeroesWritten; \
} \
buffer_size -= (nZeroes); \
}
/* Returns the least number of bits required to represent a given value */
#define GetMinBits(_val, _nbits) \
{ \
uint32 _v = _val; \
_nbits = 0; \
while (_v) \
{ \
_v >>= 1; \
_nbits++; \
} \
}
/* Converts from (2 * magnitude - sign) to integer */
#define GetIntFrom2MagSign(twoMs) (((twoMs) & 1) ? -1 * (sint16)(((twoMs) + 1) >> 1) : (sint16)((twoMs) >> 1))
/*
* Update the passed parameter and clamp it to the range [0, KPMAX]
* Return the value of parameter right-shifted by LSGR
*/
#define UpdateParam(_param, _deltaP, _k) \
{ \
_param += _deltaP; \
if (_param > KPMAX) \
_param = KPMAX; \
if (_param < 0) \
_param = 0; \
_k = (_param >> LSGR); \
}
/* Outputs the Golomb/Rice encoding of a non-negative integer */
#define GetGRCode(krp, kr) rfx_rlgr_get_gr_code(bs, krp, kr)
static uint16 rfx_rlgr_get_gr_code(RFX_BITSTREAM* bs, int* krp, int* kr)
{
int vk;
uint16 mag;
uint16 r;
/* chew up/count leading 1s and escape 0 */
vk = 0;
do
{
GetBits(1, r);
if (r == 1)
vk++;
else
break;
} while (1);
/* get next *kr bits, and combine with leading 1s */
GetBits(*kr, mag);
mag |= (vk << *kr);
/* adjust krp and kr based on vk */
if (!vk)
{
UpdateParam(*krp, -2, *kr);
}
else if (vk != 1)
{
/* at 1, no change! */
UpdateParam(*krp, vk, *kr);
}
return mag;
}
int rfx_rlgr_decode(RLGR_MODE mode, const uint8* data, int data_size, sint16* buffer, int buffer_size)
{
int k;
int kp;
int kr;
int krp;
uint16 r;
sint16* dst;
RFX_BITSTREAM* bs;
bs = xnew(RFX_BITSTREAM);
rfx_bitstream_attach(bs, data, data_size);
dst = buffer;
/* initialize the parameters */
k = 1;
kp = k << LSGR;
kr = 1;
krp = kr << LSGR;
while (!rfx_bitstream_eos(bs) && buffer_size > 0)
{
int run;
if (k)
{
int mag;
uint32 sign;
/* RL MODE */
while (!rfx_bitstream_eos(bs))
{
GetBits(1, r);
if (r)
break;
/* we have an RL escape "0", which translates to a run (1<<k) of zeros */
WriteZeroes(1 << k);
UpdateParam(kp, UP_GR, k); /* raise k and kp up because of zero run */
}
/* next k bits will contain remaining run or zeros */
GetBits(k, run);
WriteZeroes(run);
/* get nonzero value, starting with sign bit and then GRCode for magnitude -1 */
GetBits(1, sign);
/* magnitude - 1 was coded (because it was nonzero) */
mag = (int) GetGRCode(&krp, &kr) + 1;
WriteValue(sign ? -mag : mag);
UpdateParam(kp, -DN_GR, k); /* lower k and kp because of nonzero term */
}
else
{
uint32 mag;
uint32 nIdx;
uint32 val1;
uint32 val2;
/* GR (GOLOMB-RICE) MODE */
mag = GetGRCode(&krp, &kr); /* values coded are 2 * magnitude - sign */
if (mode == RLGR1)
{
if (!mag)
{
WriteValue(0);
UpdateParam(kp, UQ_GR, k); /* raise k and kp due to zero */
}
else
{
WriteValue(GetIntFrom2MagSign(mag));
UpdateParam(kp, -DQ_GR, k); /* lower k and kp due to nonzero */
}
}
else /* mode == RLGR3 */
{
/*
* In GR mode FOR RLGR3, we have encoded the
* sum of two (2 * mag - sign) values
*/
/* maximum possible bits for first term */
GetMinBits(mag, nIdx);
/* decode val1 is first term's (2 * mag - sign) value */
GetBits(nIdx, val1);
/* val2 is second term's (2 * mag - sign) value */
val2 = mag - val1;
if (val1 && val2)
{
/* raise k and kp if both terms nonzero */
UpdateParam(kp, -2 * DQ_GR, k);
}
else if (!val1 && !val2)
{
/* lower k and kp if both terms zero */
UpdateParam(kp, 2 * UQ_GR, k);
}
WriteValue(GetIntFrom2MagSign(val1));
WriteValue(GetIntFrom2MagSign(val2));
}
}
}
xfree(bs);
return (dst - buffer);
}
/* Returns the next coefficient (a signed int) to encode, from the input stream */
#define GetNextInput(_n) \
{ \
if (data_size > 0) \
{ \
_n = *data++; \
data_size--; \
} \
else \
{ \
_n = 0; \
} \
}
/* Emit bitPattern to the output bitstream */
#define OutputBits(numBits, bitPattern) rfx_bitstream_put_bits(bs, bitPattern, numBits)
/* Emit a bit (0 or 1), count number of times, to the output bitstream */
#define OutputBit(count, bit) \
{ \
uint16 _b = (bit ? 0xFFFF : 0); \
int _c = (count); \
for (; _c > 0; _c -= 16) \
rfx_bitstream_put_bits(bs, _b, (_c > 16 ? 16 : _c)); \
}
/* Converts the input value to (2 * abs(input) - sign(input)), where sign(input) = (input < 0 ? 1 : 0) and returns it */
#define Get2MagSign(input) ((input) >= 0 ? 2 * (input) : -2 * (input) - 1)
/* Outputs the Golomb/Rice encoding of a non-negative integer */
#define CodeGR(krp, val) rfx_rlgr_code_gr(bs, krp, val)
static void rfx_rlgr_code_gr(RFX_BITSTREAM* bs, int* krp, uint32 val)
{
int kr = *krp >> LSGR;
/* unary part of GR code */
uint32 vk = (val) >> kr;
OutputBit(vk, 1);
OutputBit(1, 0);
/* remainder part of GR code, if needed */
if (kr)
{
OutputBits(kr, val & ((1 << kr) - 1));
}
/* update krp, only if it is not equal to 1 */
if (vk == 0)
{
UpdateParam(*krp, -2, kr);
}
else if (vk > 1)
{
UpdateParam(*krp, vk, kr);
}
}
int rfx_rlgr_encode(RLGR_MODE mode, const sint16* data, int data_size, uint8* buffer, int buffer_size)
{
int k;
int kp;
int krp;
RFX_BITSTREAM* bs;
int processed_size;
bs = xnew(RFX_BITSTREAM);
rfx_bitstream_attach(bs, buffer, buffer_size);
/* initialize the parameters */
k = 1;
kp = 1 << LSGR;
krp = 1 << LSGR;
/* process all the input coefficients */
while (data_size > 0)
{
int input;
if (k)
{
int numZeros;
int runmax;
int mag;
int sign;
/* RUN-LENGTH MODE */
/* collect the run of zeros in the input stream */
numZeros = 0;
GetNextInput(input);
while (input == 0 && data_size > 0)
{
numZeros++;
GetNextInput(input);
}
// emit output zeros
runmax = 1 << k;
while (numZeros >= runmax)
{
OutputBit(1, 0); /* output a zero bit */
numZeros -= runmax;
UpdateParam(kp, UP_GR, k); /* update kp, k */
runmax = 1 << k;
}
/* output a 1 to terminate runs */
OutputBit(1, 1);
/* output the remaining run length using k bits */
OutputBits(k, numZeros);
/* note: when we reach here and the last byte being encoded is 0, we still
need to output the last two bits, otherwise mstsc will crash */
/* encode the nonzero value using GR coding */
mag = (input < 0 ? -input : input); /* absolute value of input coefficient */
sign = (input < 0 ? 1 : 0); /* sign of input coefficient */
OutputBit(1, sign); /* output the sign bit */
CodeGR(&krp, mag ? mag - 1 : 0); /* output GR code for (mag - 1) */
UpdateParam(kp, -DN_GR, k);
}
else
{
/* GOLOMB-RICE MODE */
if (mode == RLGR1)
{
uint32 twoMs;
/* RLGR1 variant */
/* convert input to (2*magnitude - sign), encode using GR code */
GetNextInput(input);
twoMs = Get2MagSign(input);
CodeGR(&krp, twoMs);
/* update k, kp */
/* NOTE: as of Aug 2011, the algorithm is still wrongly documented
and the update direction is reversed */
if (twoMs)
{
UpdateParam(kp, -DQ_GR, k);
}
else
{
UpdateParam(kp, UQ_GR, k);
}
}
else /* mode == RLGR3 */
{
uint32 twoMs1;
uint32 twoMs2;
uint32 sum2Ms;
uint32 nIdx;
/* RLGR3 variant */
/* convert the next two input values to (2*magnitude - sign) and */
/* encode their sum using GR code */
GetNextInput(input);
twoMs1 = Get2MagSign(input);
GetNextInput(input);
twoMs2 = Get2MagSign(input);
sum2Ms = twoMs1 + twoMs2;
CodeGR(&krp, sum2Ms);
/* encode binary representation of the first input (twoMs1). */
GetMinBits(sum2Ms, nIdx);
OutputBits(nIdx, twoMs1);
/* update k,kp for the two input values */
if (twoMs1 && twoMs2)
{
UpdateParam(kp, -2 * DQ_GR, k);
}
else if (!twoMs1 && !twoMs2)
{
UpdateParam(kp, 2 * UQ_GR, k);
}
}
}
}
processed_size = rfx_bitstream_get_processed_bytes(bs);
xfree(bs);
return processed_size;
}