FreeRDP/winpr/libwinpr/sysinfo/sysinfo.c

1033 lines
21 KiB
C

/**
* WinPR: Windows Portable Runtime
* System Information
*
* Copyright 2012 Marc-Andre Moreau <marcandre.moreau@gmail.com>
* Copyright 2013 Bernhard Miklautz <bernhard.miklautz@thincast.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <winpr/config.h>
#include <winpr/sysinfo.h>
#include <winpr/platform.h>
#if defined(ANDROID)
#include "cpufeatures/cpu-features.h"
#endif
#if defined(__linux__)
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#endif
#include "../log.h"
#define TAG WINPR_TAG("sysinfo")
/**
* api-ms-win-core-sysinfo-l1-1-1.dll:
*
* EnumSystemFirmwareTables
* GetSystemFirmwareTable
* GetLogicalProcessorInformation
* GetLogicalProcessorInformationEx
* GetProductInfo
* GetSystemDirectoryA
* GetSystemDirectoryW
* GetSystemTimeAdjustment
* GetSystemWindowsDirectoryA
* GetSystemWindowsDirectoryW
* GetWindowsDirectoryA
* GetWindowsDirectoryW
* GlobalMemoryStatusEx
* SetComputerNameExW
* VerSetConditionMask
*/
#ifndef _WIN32
#include <time.h>
#include <sys/time.h>
#ifdef WINPR_HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <winpr/crt.h>
#include <winpr/platform.h>
#if defined(__MACOSX__) || defined(__IOS__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__OpenBSD__) || defined(__DragonFly__)
#include <sys/sysctl.h>
#endif
static DWORD GetProcessorArchitecture(void)
{
DWORD cpuArch = PROCESSOR_ARCHITECTURE_UNKNOWN;
#if defined(ANDROID)
AndroidCpuFamily family = android_getCpuFamily();
switch (family)
{
case ANDROID_CPU_FAMILY_ARM:
return PROCESSOR_ARCHITECTURE_ARM;
case ANDROID_CPU_FAMILY_X86:
return PROCESSOR_ARCHITECTURE_INTEL;
case ANDROID_CPU_FAMILY_MIPS:
return PROCESSOR_ARCHITECTURE_MIPS;
case ANDROID_CPU_FAMILY_ARM64:
return PROCESSOR_ARCHITECTURE_ARM64;
case ANDROID_CPU_FAMILY_X86_64:
return PROCESSOR_ARCHITECTURE_AMD64;
case ANDROID_CPU_FAMILY_MIPS64:
return PROCESSOR_ARCHITECTURE_MIPS64;
default:
return PROCESSOR_ARCHITECTURE_UNKNOWN;
}
#elif defined(_M_ARM)
cpuArch = PROCESSOR_ARCHITECTURE_ARM;
#elif defined(_M_IX86)
cpuArch = PROCESSOR_ARCHITECTURE_INTEL;
#elif defined(_M_MIPS64)
/* Needs to be before __mips__ since the compiler defines both */
cpuArch = PROCESSOR_ARCHITECTURE_MIPS64;
#elif defined(_M_MIPS)
cpuArch = PROCESSOR_ARCHITECTURE_MIPS;
#elif defined(_M_ARM64)
cpuArch = PROCESSOR_ARCHITECTURE_ARM64;
#elif defined(_M_AMD64)
cpuArch = PROCESSOR_ARCHITECTURE_AMD64;
#elif defined(_M_PPC)
cpuArch = PROCESSOR_ARCHITECTURE_PPC;
#elif defined(_M_ALPHA)
cpuArch = PROCESSOR_ARCHITECTURE_ALPHA;
#endif
return cpuArch;
}
static DWORD GetNumberOfProcessors(void)
{
DWORD numCPUs = 1;
#if defined(ANDROID)
return android_getCpuCount();
/* TODO: iOS */
#elif defined(__linux__) || defined(__sun) || defined(_AIX)
numCPUs = (DWORD)sysconf(_SC_NPROCESSORS_ONLN);
#elif defined(__MACOSX__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__OpenBSD__) || defined(__DragonFly__)
{
int mib[4];
size_t length = sizeof(numCPUs);
mib[0] = CTL_HW;
#if defined(__FreeBSD__) || defined(__OpenBSD__)
mib[1] = HW_NCPU;
#else
mib[1] = HW_AVAILCPU;
#endif
sysctl(mib, 2, &numCPUs, &length, NULL, 0);
if (numCPUs < 1)
{
mib[1] = HW_NCPU;
sysctl(mib, 2, &numCPUs, &length, NULL, 0);
if (numCPUs < 1)
numCPUs = 1;
}
}
#elif defined(__hpux)
numCPUs = (DWORD)mpctl(MPC_GETNUMSPUS, NULL, NULL);
#elif defined(__sgi)
numCPUs = (DWORD)sysconf(_SC_NPROC_ONLN);
#endif
return numCPUs;
}
static DWORD GetSystemPageSize(void)
{
DWORD dwPageSize = 0;
long sc_page_size = -1;
#if defined(_SC_PAGESIZE)
if (sc_page_size < 0)
sc_page_size = sysconf(_SC_PAGESIZE);
#endif
#if defined(_SC_PAGE_SIZE)
if (sc_page_size < 0)
sc_page_size = sysconf(_SC_PAGE_SIZE);
#endif
if (sc_page_size > 0)
dwPageSize = (DWORD)sc_page_size;
if (dwPageSize < 4096)
dwPageSize = 4096;
return dwPageSize;
}
void GetSystemInfo(LPSYSTEM_INFO lpSystemInfo)
{
lpSystemInfo->wProcessorArchitecture = GetProcessorArchitecture();
lpSystemInfo->wReserved = 0;
lpSystemInfo->dwPageSize = GetSystemPageSize();
lpSystemInfo->lpMinimumApplicationAddress = NULL;
lpSystemInfo->lpMaximumApplicationAddress = NULL;
lpSystemInfo->dwActiveProcessorMask = 0;
lpSystemInfo->dwNumberOfProcessors = GetNumberOfProcessors();
lpSystemInfo->dwProcessorType = 0;
lpSystemInfo->dwAllocationGranularity = 0;
lpSystemInfo->wProcessorLevel = 0;
lpSystemInfo->wProcessorRevision = 0;
}
void GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo)
{
GetSystemInfo(lpSystemInfo);
}
void GetSystemTime(LPSYSTEMTIME lpSystemTime)
{
time_t ct = 0;
struct tm tres;
struct tm* stm = NULL;
WORD wMilliseconds = 0;
ct = time(NULL);
wMilliseconds = (WORD)(GetTickCount() % 1000);
stm = gmtime_r(&ct, &tres);
ZeroMemory(lpSystemTime, sizeof(SYSTEMTIME));
if (stm)
{
lpSystemTime->wYear = (WORD)(stm->tm_year + 1900);
lpSystemTime->wMonth = (WORD)(stm->tm_mon + 1);
lpSystemTime->wDayOfWeek = (WORD)stm->tm_wday;
lpSystemTime->wDay = (WORD)stm->tm_mday;
lpSystemTime->wHour = (WORD)stm->tm_hour;
lpSystemTime->wMinute = (WORD)stm->tm_min;
lpSystemTime->wSecond = (WORD)stm->tm_sec;
lpSystemTime->wMilliseconds = wMilliseconds;
}
}
BOOL SetSystemTime(CONST SYSTEMTIME* lpSystemTime)
{
/* TODO: Implement */
return FALSE;
}
VOID GetLocalTime(LPSYSTEMTIME lpSystemTime)
{
time_t ct = 0;
struct tm tres;
struct tm* ltm = NULL;
WORD wMilliseconds = 0;
ct = time(NULL);
wMilliseconds = (WORD)(GetTickCount() % 1000);
ltm = localtime_r(&ct, &tres);
ZeroMemory(lpSystemTime, sizeof(SYSTEMTIME));
if (ltm)
{
lpSystemTime->wYear = (WORD)(ltm->tm_year + 1900);
lpSystemTime->wMonth = (WORD)(ltm->tm_mon + 1);
lpSystemTime->wDayOfWeek = (WORD)ltm->tm_wday;
lpSystemTime->wDay = (WORD)ltm->tm_mday;
lpSystemTime->wHour = (WORD)ltm->tm_hour;
lpSystemTime->wMinute = (WORD)ltm->tm_min;
lpSystemTime->wSecond = (WORD)ltm->tm_sec;
lpSystemTime->wMilliseconds = wMilliseconds;
}
}
BOOL SetLocalTime(CONST SYSTEMTIME* lpSystemTime)
{
/* TODO: Implement */
return FALSE;
}
VOID GetSystemTimeAsFileTime(LPFILETIME lpSystemTimeAsFileTime)
{
ULARGE_INTEGER time64;
time64.u.HighPart = 0;
/* time represented in tenths of microseconds since midnight of January 1, 1601 */
time64.QuadPart = time(NULL) + 11644473600LL; /* Seconds since January 1, 1601 */
time64.QuadPart *= 10000000; /* Convert timestamp to tenths of a microsecond */
lpSystemTimeAsFileTime->dwLowDateTime = time64.u.LowPart;
lpSystemTimeAsFileTime->dwHighDateTime = time64.u.HighPart;
}
BOOL GetSystemTimeAdjustment(PDWORD lpTimeAdjustment, PDWORD lpTimeIncrement,
PBOOL lpTimeAdjustmentDisabled)
{
/* TODO: Implement */
return FALSE;
}
#ifndef CLOCK_MONOTONIC_RAW
#define CLOCK_MONOTONIC_RAW 4
#endif
DWORD GetTickCount(void)
{
DWORD ticks = 0;
#ifdef __linux__
struct timespec ts;
if (!clock_gettime(CLOCK_MONOTONIC_RAW, &ts))
ticks = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
#else
/**
* FIXME: this is relative to the Epoch time, and we
* need to return a value relative to the system uptime.
*/
struct timeval tv;
if (!gettimeofday(&tv, NULL))
ticks = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
#endif
return ticks;
}
#endif // _WIN32
#if !defined(_WIN32) || defined(_UWP)
#if defined(WITH_WINPR_DEPRECATED)
/* OSVERSIONINFOEX Structure:
* http://msdn.microsoft.com/en-us/library/windows/desktop/ms724833
*/
BOOL GetVersionExA(LPOSVERSIONINFOA lpVersionInformation)
{
#ifdef _UWP
/* Windows 10 Version Info */
if ((lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOA)) ||
(lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOEXA)))
{
lpVersionInformation->dwMajorVersion = 10;
lpVersionInformation->dwMinorVersion = 0;
lpVersionInformation->dwBuildNumber = 0;
lpVersionInformation->dwPlatformId = VER_PLATFORM_WIN32_NT;
ZeroMemory(lpVersionInformation->szCSDVersion, sizeof(lpVersionInformation->szCSDVersion));
if (lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOEXA))
{
LPOSVERSIONINFOEXA lpVersionInformationEx = (LPOSVERSIONINFOEXA)lpVersionInformation;
lpVersionInformationEx->wServicePackMajor = 0;
lpVersionInformationEx->wServicePackMinor = 0;
lpVersionInformationEx->wSuiteMask = 0;
lpVersionInformationEx->wProductType = VER_NT_WORKSTATION;
lpVersionInformationEx->wReserved = 0;
}
return TRUE;
}
#else
/* Windows 7 SP1 Version Info */
if ((lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOA)) ||
(lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOEXA)))
{
lpVersionInformation->dwMajorVersion = 6;
lpVersionInformation->dwMinorVersion = 1;
lpVersionInformation->dwBuildNumber = 7601;
lpVersionInformation->dwPlatformId = VER_PLATFORM_WIN32_NT;
ZeroMemory(lpVersionInformation->szCSDVersion, sizeof(lpVersionInformation->szCSDVersion));
if (lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOEXA))
{
LPOSVERSIONINFOEXA lpVersionInformationEx = (LPOSVERSIONINFOEXA)lpVersionInformation;
lpVersionInformationEx->wServicePackMajor = 1;
lpVersionInformationEx->wServicePackMinor = 0;
lpVersionInformationEx->wSuiteMask = 0;
lpVersionInformationEx->wProductType = VER_NT_WORKSTATION;
lpVersionInformationEx->wReserved = 0;
}
return TRUE;
}
#endif
return FALSE;
}
BOOL GetVersionExW(LPOSVERSIONINFOW lpVersionInformation)
{
ZeroMemory(lpVersionInformation->szCSDVersion, sizeof(lpVersionInformation->szCSDVersion));
return GetVersionExA((LPOSVERSIONINFOA)lpVersionInformation);
}
#endif
#endif
#if !defined(_WIN32) || defined(_UWP)
BOOL GetComputerNameW(LPWSTR lpBuffer, LPDWORD lpnSize)
{
BOOL rc;
LPSTR buffer = NULL;
if (!lpnSize || (*lpnSize > INT_MAX))
return FALSE;
if (*lpnSize > 0)
{
buffer = malloc(*lpnSize);
if (!buffer)
return FALSE;
}
rc = GetComputerNameA(buffer, lpnSize);
if (rc && (*lpnSize > 0))
{
const SSIZE_T res = ConvertUtf8NToWChar(buffer, *lpnSize, lpBuffer, *lpnSize);
rc = res > 0;
}
free(buffer);
return rc;
}
BOOL GetComputerNameA(LPSTR lpBuffer, LPDWORD lpnSize)
{
char* dot;
size_t length;
char hostname[256] = { 0 };
if (!lpnSize)
{
SetLastError(ERROR_BAD_ARGUMENTS);
return FALSE;
}
if (gethostname(hostname, sizeof(hostname)) == -1)
return FALSE;
length = strnlen(hostname, sizeof(hostname));
dot = strchr(hostname, '.');
if (dot)
length = (dot - hostname);
if ((*lpnSize <= (DWORD)length) || !lpBuffer)
{
SetLastError(ERROR_BUFFER_OVERFLOW);
*lpnSize = (DWORD)(length + 1);
return FALSE;
}
CopyMemory(lpBuffer, hostname, length);
lpBuffer[length] = '\0';
*lpnSize = (DWORD)length;
return TRUE;
}
BOOL GetComputerNameExA(COMPUTER_NAME_FORMAT NameType, LPSTR lpBuffer, LPDWORD lpnSize)
{
size_t length;
char hostname[256] = { 0 };
if (!lpnSize)
{
SetLastError(ERROR_BAD_ARGUMENTS);
return FALSE;
}
if ((NameType == ComputerNameNetBIOS) || (NameType == ComputerNamePhysicalNetBIOS))
{
BOOL rc = GetComputerNameA(lpBuffer, lpnSize);
if (!rc)
{
if (GetLastError() == ERROR_BUFFER_OVERFLOW)
SetLastError(ERROR_MORE_DATA);
}
return rc;
}
if (gethostname(hostname, sizeof(hostname)) == -1)
return FALSE;
length = strnlen(hostname, sizeof(hostname));
switch (NameType)
{
case ComputerNameDnsHostname:
case ComputerNameDnsDomain:
case ComputerNameDnsFullyQualified:
case ComputerNamePhysicalDnsHostname:
case ComputerNamePhysicalDnsDomain:
case ComputerNamePhysicalDnsFullyQualified:
if ((*lpnSize <= (DWORD)length) || !lpBuffer)
{
*lpnSize = (DWORD)(length + 1);
SetLastError(ERROR_MORE_DATA);
return FALSE;
}
CopyMemory(lpBuffer, hostname, length);
lpBuffer[length] = '\0';
*lpnSize = (DWORD)length;
break;
default:
return FALSE;
}
return TRUE;
}
BOOL GetComputerNameExW(COMPUTER_NAME_FORMAT NameType, LPWSTR lpBuffer, LPDWORD lpnSize)
{
BOOL rc;
LPSTR lpABuffer = NULL;
if (!lpnSize)
{
SetLastError(ERROR_BAD_ARGUMENTS);
return FALSE;
}
if (*lpnSize > 0)
{
lpABuffer = calloc(*lpnSize, sizeof(CHAR));
if (!lpABuffer)
return FALSE;
}
rc = GetComputerNameExA(NameType, lpABuffer, lpnSize);
if (rc && (*lpnSize > 0))
{
const SSIZE_T res = ConvertUtf8NToWChar(lpABuffer, *lpnSize, lpBuffer, *lpnSize);
rc = res > 0;
}
free(lpABuffer);
return rc;
}
#endif
#if defined(_UWP)
DWORD GetTickCount(void)
{
return (DWORD)GetTickCount64();
}
#endif
#if (!defined(_WIN32)) || (defined(_WIN32) && (_WIN32_WINNT < 0x0600))
ULONGLONG winpr_GetTickCount64(void)
{
ULONGLONG ticks = 0;
#if defined(__linux__)
struct timespec ts;
if (!clock_gettime(CLOCK_MONOTONIC_RAW, &ts))
ticks = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
#elif defined(_WIN32)
FILETIME ft;
ULARGE_INTEGER ul;
GetSystemTimeAsFileTime(&ft);
ul.LowPart = ft.dwLowDateTime;
ul.HighPart = ft.dwHighDateTime;
ticks = ul.QuadPart;
#else
/**
* FIXME: this is relative to the Epoch time, and we
* need to return a value relative to the system uptime.
*/
struct timeval tv;
if (!gettimeofday(&tv, NULL))
ticks = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
#endif
return ticks;
}
#endif
/* If x86 */
#ifdef _M_IX86_AMD64
#if defined(__GNUC__)
#define xgetbv(_func_, _lo_, _hi_) \
__asm__ __volatile__("xgetbv" : "=a"(_lo_), "=d"(_hi_) : "c"(_func_))
#elif defined(_MSC_VER)
#define xgetbv(_func_, _lo_, _hi_) \
{ \
unsigned __int64 val = _xgetbv(_func_); \
_lo_ = val & 0xFFFFFFFF; \
_hi_ = (val >> 32); \
}
#endif
#define B_BIT_AVX2 (1 << 5)
#define B_BIT_AVX512F (1 << 16)
#define D_BIT_MMX (1 << 23)
#define D_BIT_SSE (1 << 25)
#define D_BIT_SSE2 (1 << 26)
#define D_BIT_3DN (1 << 30)
#define C_BIT_SSE3 (1 << 0)
#define C_BIT_PCLMULQDQ (1 << 1)
#define C81_BIT_LZCNT (1 << 5)
#define C_BIT_3DNP (1 << 8)
#define C_BIT_3DNP (1 << 8)
#define C_BIT_SSSE3 (1 << 9)
#define C_BIT_SSE41 (1 << 19)
#define C_BIT_SSE42 (1 << 20)
#define C_BIT_FMA (1 << 12)
#define C_BIT_AES (1 << 25)
#define C_BIT_XGETBV (1 << 27)
#define C_BIT_AVX (1 << 28)
#define E_BIT_XMM (1 << 1)
#define E_BIT_YMM (1 << 2)
#define E_BITS_AVX (E_BIT_XMM | E_BIT_YMM)
static void cpuid(unsigned info, unsigned* eax, unsigned* ebx, unsigned* ecx, unsigned* edx)
{
#ifdef __GNUC__
*eax = *ebx = *ecx = *edx = 0;
__asm volatile(
/* The EBX (or RBX register on x86_64) is used for the PIC base address
* and must not be corrupted by our inline assembly.
*/
#ifdef _M_IX86
"mov %%ebx, %%esi;"
"cpuid;"
"xchg %%ebx, %%esi;"
#else
"mov %%rbx, %%rsi;"
"cpuid;"
"xchg %%rbx, %%rsi;"
#endif
: "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(info), "c"(0));
#elif defined(_MSC_VER)
int a[4];
__cpuid(a, info);
*eax = a[0];
*ebx = a[1];
*ecx = a[2];
*edx = a[3];
#endif
}
#elif defined(_M_ARM)
#if defined(__linux__)
// HWCAP flags from linux kernel - uapi/asm/hwcap.h
#define HWCAP_SWP (1 << 0)
#define HWCAP_HALF (1 << 1)
#define HWCAP_THUMB (1 << 2)
#define HWCAP_26BIT (1 << 3) /* Play it safe */
#define HWCAP_FAST_MULT (1 << 4)
#define HWCAP_FPA (1 << 5)
#define HWCAP_VFP (1 << 6)
#define HWCAP_EDSP (1 << 7)
#define HWCAP_JAVA (1 << 8)
#define HWCAP_IWMMXT (1 << 9)
#define HWCAP_CRUNCH (1 << 10)
#define HWCAP_THUMBEE (1 << 11)
#define HWCAP_NEON (1 << 12)
#define HWCAP_VFPv3 (1 << 13)
#define HWCAP_VFPv3D16 (1 << 14) /* also set for VFPv4-D16 */
#define HWCAP_TLS (1 << 15)
#define HWCAP_VFPv4 (1 << 16)
#define HWCAP_IDIVA (1 << 17)
#define HWCAP_IDIVT (1 << 18)
#define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */
#define HWCAP_IDIV (HWCAP_IDIVA | HWCAP_IDIVT)
// From linux kernel uapi/linux/auxvec.h
#define AT_HWCAP 16
static unsigned GetARMCPUCaps(void)
{
unsigned caps = 0;
int fd = open("/proc/self/auxv", O_RDONLY);
if (fd == -1)
return 0;
static struct
{
unsigned a_type; /* Entry type */
unsigned a_val; /* Integer value */
} auxvec;
while (1)
{
int num;
num = read(fd, (char*)&auxvec, sizeof(auxvec));
if (num < 1 || (auxvec.a_type == 0 && auxvec.a_val == 0))
break;
if (auxvec.a_type == AT_HWCAP)
{
caps = auxvec.a_val;
}
}
close(fd);
return caps;
}
#endif // defined(__linux__)
#endif // _M_IX86_AMD64
#ifndef _WIN32
BOOL IsProcessorFeaturePresent(DWORD ProcessorFeature)
{
BOOL ret = FALSE;
#if defined(ANDROID)
const uint64_t features = android_getCpuFeatures();
switch (ProcessorFeature)
{
case PF_ARM_NEON_INSTRUCTIONS_AVAILABLE:
case PF_ARM_NEON:
return features & ANDROID_CPU_ARM_FEATURE_NEON;
default:
return FALSE;
}
#elif defined(_M_ARM)
#ifdef __linux__
const unsigned caps = GetARMCPUCaps();
switch (ProcessorFeature)
{
case PF_ARM_NEON_INSTRUCTIONS_AVAILABLE:
case PF_ARM_NEON:
if (caps & HWCAP_NEON)
ret = TRUE;
break;
case PF_ARM_THUMB:
if (caps & HWCAP_THUMB)
ret = TRUE;
case PF_ARM_VFP_32_REGISTERS_AVAILABLE:
if (caps & HWCAP_VFPD32)
ret = TRUE;
case PF_ARM_DIVIDE_INSTRUCTION_AVAILABLE:
if ((caps & HWCAP_IDIVA) || (caps & HWCAP_IDIVT))
ret = TRUE;
case PF_ARM_VFP3:
if (caps & HWCAP_VFPv3)
ret = TRUE;
break;
case PF_ARM_JAZELLE:
if (caps & HWCAP_JAVA)
ret = TRUE;
break;
case PF_ARM_DSP:
if (caps & HWCAP_EDSP)
ret = TRUE;
break;
case PF_ARM_MPU:
if (caps & HWCAP_EDSP)
ret = TRUE;
break;
case PF_ARM_THUMB2:
if ((caps & HWCAP_IDIVT) || (caps & HWCAP_VFPv4))
ret = TRUE;
break;
case PF_ARM_T2EE:
if (caps & HWCAP_THUMBEE)
ret = TRUE;
break;
case PF_ARM_INTEL_WMMX:
if (caps & HWCAP_IWMMXT)
ret = TRUE;
break;
default:
break;
}
#elif defined(__APPLE__) // __linux__
switch (ProcessorFeature)
{
case PF_ARM_NEON_INSTRUCTIONS_AVAILABLE:
case PF_ARM_NEON:
ret = TRUE;
break;
}
#endif // __linux__
#elif defined(_M_IX86_AMD64)
#ifdef __GNUC__
unsigned a, b, c, d;
cpuid(1, &a, &b, &c, &d);
switch (ProcessorFeature)
{
case PF_MMX_INSTRUCTIONS_AVAILABLE:
if (d & D_BIT_MMX)
ret = TRUE;
break;
case PF_XMMI_INSTRUCTIONS_AVAILABLE:
if (d & D_BIT_SSE)
ret = TRUE;
break;
case PF_XMMI64_INSTRUCTIONS_AVAILABLE:
if (d & D_BIT_SSE2)
ret = TRUE;
break;
case PF_3DNOW_INSTRUCTIONS_AVAILABLE:
if (d & D_BIT_3DN)
ret = TRUE;
break;
case PF_SSE3_INSTRUCTIONS_AVAILABLE:
if (c & C_BIT_SSE3)
ret = TRUE;
break;
default:
break;
}
#endif // __GNUC__
#endif
return ret;
}
#endif //_WIN32
DWORD GetTickCountPrecise(void)
{
#ifdef _WIN32
LARGE_INTEGER freq;
LARGE_INTEGER current;
QueryPerformanceFrequency(&freq);
QueryPerformanceCounter(&current);
return (DWORD)(current.QuadPart * 1000LL / freq.QuadPart);
#else
return GetTickCount();
#endif
}
BOOL IsProcessorFeaturePresentEx(DWORD ProcessorFeature)
{
BOOL ret = FALSE;
#ifdef _M_ARM
#ifdef __linux__
unsigned caps;
caps = GetARMCPUCaps();
switch (ProcessorFeature)
{
case PF_EX_ARM_VFP1:
if (caps & HWCAP_VFP)
ret = TRUE;
break;
case PF_EX_ARM_VFP3D16:
if (caps & HWCAP_VFPv3D16)
ret = TRUE;
break;
case PF_EX_ARM_VFP4:
if (caps & HWCAP_VFPv4)
ret = TRUE;
break;
case PF_EX_ARM_IDIVA:
if (caps & HWCAP_IDIVA)
ret = TRUE;
break;
case PF_EX_ARM_IDIVT:
if (caps & HWCAP_IDIVT)
ret = TRUE;
break;
}
#endif // __linux__
#elif defined(_M_IX86_AMD64)
unsigned a, b, c, d;
cpuid(1, &a, &b, &c, &d);
switch (ProcessorFeature)
{
case PF_EX_LZCNT:
{
unsigned a81, b81, c81, d81;
cpuid(0x80000001, &a81, &b81, &c81, &d81);
if (c81 & C81_BIT_LZCNT)
ret = TRUE;
}
break;
case PF_EX_3DNOW_PREFETCH:
if (c & C_BIT_3DNP)
ret = TRUE;
break;
case PF_EX_SSSE3:
if (c & C_BIT_SSSE3)
ret = TRUE;
break;
case PF_EX_SSE41:
if (c & C_BIT_SSE41)
ret = TRUE;
break;
case PF_EX_SSE42:
if (c & C_BIT_SSE42)
ret = TRUE;
break;
#if defined(__GNUC__) || defined(_MSC_VER)
case PF_EX_AVX:
case PF_EX_AVX2:
case PF_EX_AVX512F:
case PF_EX_FMA:
case PF_EX_AVX_AES:
case PF_EX_AVX_PCLMULQDQ:
{
/* Check for general AVX support */
if (!(c & C_BIT_AVX))
break;
/* Check for xgetbv support */
if (!(c & C_BIT_XGETBV))
break;
int e, f;
xgetbv(0, e, f);
/* XGETBV enabled for applications and XMM/YMM states enabled */
if ((e & E_BITS_AVX) == E_BITS_AVX)
{
switch (ProcessorFeature)
{
case PF_EX_AVX:
ret = TRUE;
break;
case PF_EX_AVX2:
case PF_EX_AVX512F:
cpuid(7, &a, &b, &c, &d);
switch (ProcessorFeature)
{
case PF_EX_AVX2:
if (b & B_BIT_AVX2)
ret = TRUE;
break;
case PF_EX_AVX512F:
if (b & B_BIT_AVX512F)
ret = TRUE;
break;
default:
break;
}
break;
case PF_EX_FMA:
if (c & C_BIT_FMA)
ret = TRUE;
break;
case PF_EX_AVX_AES:
if (c & C_BIT_AES)
ret = TRUE;
break;
case PF_EX_AVX_PCLMULQDQ:
if (c & C_BIT_PCLMULQDQ)
ret = TRUE;
break;
}
}
}
break;
#endif // __GNUC__ || _MSC_VER
default:
break;
}
#endif
return ret;
}