FreeRDP/libfreerdp/core/security.c

657 lines
21 KiB
C

/**
* FreeRDP: A Remote Desktop Protocol Implementation
* RDP Security
*
* Copyright 2011 Marc-Andre Moreau <marcandre.moreau@gmail.com>
* Copyright 2014 Norbert Federa <norbert.federa@thincast.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "security.h"
/* 0x36 repeated 40 times */
static const BYTE pad1[40] =
{
"\x36\x36\x36\x36\x36\x36\x36\x36"
"\x36\x36\x36\x36\x36\x36\x36\x36"
"\x36\x36\x36\x36\x36\x36\x36\x36"
"\x36\x36\x36\x36\x36\x36\x36\x36"
"\x36\x36\x36\x36\x36\x36\x36\x36"
};
/* 0x5C repeated 48 times */
static const BYTE pad2[48] =
{
"\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C"
"\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C"
"\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C"
"\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C"
"\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C"
"\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C"
};
static const BYTE
fips_reverse_table[256] =
{
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff
};
static const BYTE
fips_oddparity_table[256] =
{
0x01, 0x01, 0x02, 0x02, 0x04, 0x04, 0x07, 0x07,
0x08, 0x08, 0x0b, 0x0b, 0x0d, 0x0d, 0x0e, 0x0e,
0x10, 0x10, 0x13, 0x13, 0x15, 0x15, 0x16, 0x16,
0x19, 0x19, 0x1a, 0x1a, 0x1c, 0x1c, 0x1f, 0x1f,
0x20, 0x20, 0x23, 0x23, 0x25, 0x25, 0x26, 0x26,
0x29, 0x29, 0x2a, 0x2a, 0x2c, 0x2c, 0x2f, 0x2f,
0x31, 0x31, 0x32, 0x32, 0x34, 0x34, 0x37, 0x37,
0x38, 0x38, 0x3b, 0x3b, 0x3d, 0x3d, 0x3e, 0x3e,
0x40, 0x40, 0x43, 0x43, 0x45, 0x45, 0x46, 0x46,
0x49, 0x49, 0x4a, 0x4a, 0x4c, 0x4c, 0x4f, 0x4f,
0x51, 0x51, 0x52, 0x52, 0x54, 0x54, 0x57, 0x57,
0x58, 0x58, 0x5b, 0x5b, 0x5d, 0x5d, 0x5e, 0x5e,
0x61, 0x61, 0x62, 0x62, 0x64, 0x64, 0x67, 0x67,
0x68, 0x68, 0x6b, 0x6b, 0x6d, 0x6d, 0x6e, 0x6e,
0x70, 0x70, 0x73, 0x73, 0x75, 0x75, 0x76, 0x76,
0x79, 0x79, 0x7a, 0x7a, 0x7c, 0x7c, 0x7f, 0x7f,
0x80, 0x80, 0x83, 0x83, 0x85, 0x85, 0x86, 0x86,
0x89, 0x89, 0x8a, 0x8a, 0x8c, 0x8c, 0x8f, 0x8f,
0x91, 0x91, 0x92, 0x92, 0x94, 0x94, 0x97, 0x97,
0x98, 0x98, 0x9b, 0x9b, 0x9d, 0x9d, 0x9e, 0x9e,
0xa1, 0xa1, 0xa2, 0xa2, 0xa4, 0xa4, 0xa7, 0xa7,
0xa8, 0xa8, 0xab, 0xab, 0xad, 0xad, 0xae, 0xae,
0xb0, 0xb0, 0xb3, 0xb3, 0xb5, 0xb5, 0xb6, 0xb6,
0xb9, 0xb9, 0xba, 0xba, 0xbc, 0xbc, 0xbf, 0xbf,
0xc1, 0xc1, 0xc2, 0xc2, 0xc4, 0xc4, 0xc7, 0xc7,
0xc8, 0xc8, 0xcb, 0xcb, 0xcd, 0xcd, 0xce, 0xce,
0xd0, 0xd0, 0xd3, 0xd3, 0xd5, 0xd5, 0xd6, 0xd6,
0xd9, 0xd9, 0xda, 0xda, 0xdc, 0xdc, 0xdf, 0xdf,
0xe0, 0xe0, 0xe3, 0xe3, 0xe5, 0xe5, 0xe6, 0xe6,
0xe9, 0xe9, 0xea, 0xea, 0xec, 0xec, 0xef, 0xef,
0xf1, 0xf1, 0xf2, 0xf2, 0xf4, 0xf4, 0xf7, 0xf7,
0xf8, 0xf8, 0xfb, 0xfb, 0xfd, 0xfd, 0xfe, 0xfe
};
static void security_salted_hash(const BYTE* salt, const BYTE* input, int length,
const BYTE* salt1, const BYTE* salt2, BYTE* output)
{
CryptoMd5 md5;
CryptoSha1 sha1;
BYTE sha1_digest[CRYPTO_SHA1_DIGEST_LENGTH];
/* SaltedHash(Salt, Input, Salt1, Salt2) = MD5(S + SHA1(Input + Salt + Salt1 + Salt2)) */
/* SHA1_Digest = SHA1(Input + Salt + Salt1 + Salt2) */
sha1 = crypto_sha1_init();
if (!sha1)
{
fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__);
return;
}
crypto_sha1_update(sha1, input, length); /* Input */
crypto_sha1_update(sha1, salt, 48); /* Salt (48 bytes) */
crypto_sha1_update(sha1, salt1, 32); /* Salt1 (32 bytes) */
crypto_sha1_update(sha1, salt2, 32); /* Salt2 (32 bytes) */
crypto_sha1_final(sha1, sha1_digest);
/* SaltedHash(Salt, Input, Salt1, Salt2) = MD5(S + SHA1_Digest) */
md5 = crypto_md5_init();
if (!md5)
{
fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__);
return;
}
crypto_md5_update(md5, salt, 48); /* Salt (48 bytes) */
crypto_md5_update(md5, sha1_digest, sizeof(sha1_digest)); /* SHA1_Digest */
crypto_md5_final(md5, output);
}
static void security_premaster_hash(const char* input, int length, const BYTE* premaster_secret, const BYTE* client_random, const BYTE* server_random, BYTE* output)
{
/* PremasterHash(Input) = SaltedHash(PremasterSecret, Input, ClientRandom, ServerRandom) */
security_salted_hash(premaster_secret, (BYTE*)input, length, client_random, server_random, output);
}
void security_master_secret(const BYTE* premaster_secret, const BYTE* client_random,
const BYTE* server_random, BYTE* output)
{
/* MasterSecret = PremasterHash('A') + PremasterHash('BB') + PremasterHash('CCC') */
security_premaster_hash("A", 1, premaster_secret, client_random, server_random, &output[0]);
security_premaster_hash("BB", 2, premaster_secret, client_random, server_random, &output[16]);
security_premaster_hash("CCC", 3, premaster_secret, client_random, server_random, &output[32]);
}
static void security_master_hash(const char* input, int length, const BYTE* master_secret,
const BYTE* client_random, const BYTE* server_random, BYTE* output)
{
/* MasterHash(Input) = SaltedHash(MasterSecret, Input, ServerRandom, ClientRandom) */
security_salted_hash(master_secret, (const BYTE*)input, length, server_random, client_random, output);
}
void security_session_key_blob(const BYTE* master_secret, const BYTE* client_random,
const BYTE* server_random, BYTE* output)
{
/* MasterHash = MasterHash('A') + MasterHash('BB') + MasterHash('CCC') */
security_master_hash("A", 1, master_secret, client_random, server_random, &output[0]);
security_master_hash("BB", 2, master_secret, client_random, server_random, &output[16]);
security_master_hash("CCC", 3, master_secret, client_random, server_random, &output[32]);
}
void security_mac_salt_key(const BYTE* session_key_blob, const BYTE* client_random,
const BYTE* server_random, BYTE* output)
{
/* MacSaltKey = First128Bits(SessionKeyBlob) */
memcpy(output, session_key_blob, 16);
}
void security_md5_16_32_32(const BYTE* in0, const BYTE* in1, const BYTE* in2, BYTE* output)
{
CryptoMd5 md5;
md5 = crypto_md5_init();
if (!md5)
{
fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__);
return;
}
crypto_md5_update(md5, in0, 16);
crypto_md5_update(md5, in1, 32);
crypto_md5_update(md5, in2, 32);
crypto_md5_final(md5, output);
}
void security_licensing_encryption_key(const BYTE* session_key_blob, const BYTE* client_random,
const BYTE* server_random, BYTE* output)
{
/* LicensingEncryptionKey = MD5(Second128Bits(SessionKeyBlob) + ClientRandom + ServerRandom)) */
security_md5_16_32_32(&session_key_blob[16], client_random, server_random, output);
}
void security_UINT32_le(BYTE* output, UINT32 value)
{
output[0] = (value) & 0xFF;
output[1] = (value >> 8) & 0xFF;
output[2] = (value >> 16) & 0xFF;
output[3] = (value >> 24) & 0xFF;
}
void security_mac_data(const BYTE* mac_salt_key, const BYTE* data, UINT32 length,
BYTE* output)
{
CryptoMd5 md5;
CryptoSha1 sha1;
BYTE length_le[4];
BYTE sha1_digest[CRYPTO_SHA1_DIGEST_LENGTH];
/* MacData = MD5(MacSaltKey + pad2 + SHA1(MacSaltKey + pad1 + length + data)) */
security_UINT32_le(length_le, length); /* length must be little-endian */
/* SHA1_Digest = SHA1(MacSaltKey + pad1 + length + data) */
sha1 = crypto_sha1_init();
if (!sha1)
{
fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__);
return;
}
crypto_sha1_update(sha1, mac_salt_key, 16); /* MacSaltKey */
crypto_sha1_update(sha1, pad1, sizeof(pad1)); /* pad1 */
crypto_sha1_update(sha1, length_le, sizeof(length_le)); /* length */
crypto_sha1_update(sha1, data, length); /* data */
crypto_sha1_final(sha1, sha1_digest);
/* MacData = MD5(MacSaltKey + pad2 + SHA1_Digest) */
md5 = crypto_md5_init();
if (!md5)
{
fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__);
return;
}
crypto_md5_update(md5, mac_salt_key, 16); /* MacSaltKey */
crypto_md5_update(md5, pad2, sizeof(pad2)); /* pad2 */
crypto_md5_update(md5, sha1_digest, sizeof(sha1_digest)); /* SHA1_Digest */
crypto_md5_final(md5, output);
}
void security_mac_signature(rdpRdp *rdp, const BYTE* data, UINT32 length, BYTE* output)
{
CryptoMd5 md5;
CryptoSha1 sha1;
BYTE length_le[4];
BYTE md5_digest[CRYPTO_MD5_DIGEST_LENGTH];
BYTE sha1_digest[CRYPTO_SHA1_DIGEST_LENGTH];
security_UINT32_le(length_le, length); /* length must be little-endian */
/* SHA1_Digest = SHA1(MACKeyN + pad1 + length + data) */
sha1 = crypto_sha1_init();
if (!sha1)
{
fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__);
return;
}
crypto_sha1_update(sha1, rdp->sign_key, rdp->rc4_key_len); /* MacKeyN */
crypto_sha1_update(sha1, pad1, sizeof(pad1)); /* pad1 */
crypto_sha1_update(sha1, length_le, sizeof(length_le)); /* length */
crypto_sha1_update(sha1, data, length); /* data */
crypto_sha1_final(sha1, sha1_digest);
/* MACSignature = First64Bits(MD5(MACKeyN + pad2 + SHA1_Digest)) */
md5 = crypto_md5_init();
if (!md5)
{
fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__);
return;
}
crypto_md5_update(md5, rdp->sign_key, rdp->rc4_key_len); /* MacKeyN */
crypto_md5_update(md5, pad2, sizeof(pad2)); /* pad2 */
crypto_md5_update(md5, sha1_digest, sizeof(sha1_digest)); /* SHA1_Digest */
crypto_md5_final(md5, md5_digest);
memcpy(output, md5_digest, 8);
}
void security_salted_mac_signature(rdpRdp *rdp, const BYTE* data, UINT32 length,
BOOL encryption, BYTE* output)
{
CryptoMd5 md5;
CryptoSha1 sha1;
BYTE length_le[4];
BYTE use_count_le[4];
BYTE md5_digest[CRYPTO_MD5_DIGEST_LENGTH];
BYTE sha1_digest[CRYPTO_SHA1_DIGEST_LENGTH];
security_UINT32_le(length_le, length); /* length must be little-endian */
if (encryption)
{
security_UINT32_le(use_count_le, rdp->encrypt_checksum_use_count);
}
else
{
/*
* We calculate checksum on plain text, so we must have already
* decrypt it, which means decrypt_checksum_use_count is off by one.
*/
security_UINT32_le(use_count_le, rdp->decrypt_checksum_use_count - 1);
}
/* SHA1_Digest = SHA1(MACKeyN + pad1 + length + data) */
sha1 = crypto_sha1_init();
if (!sha1)
{
fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__);
return;
}
crypto_sha1_update(sha1, rdp->sign_key, rdp->rc4_key_len); /* MacKeyN */
crypto_sha1_update(sha1, pad1, sizeof(pad1)); /* pad1 */
crypto_sha1_update(sha1, length_le, sizeof(length_le)); /* length */
crypto_sha1_update(sha1, data, length); /* data */
crypto_sha1_update(sha1, use_count_le, sizeof(use_count_le)); /* encryptionCount */
crypto_sha1_final(sha1, sha1_digest);
/* MACSignature = First64Bits(MD5(MACKeyN + pad2 + SHA1_Digest)) */
md5 = crypto_md5_init();
if (!md5)
{
fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__);
return;
}
crypto_md5_update(md5, rdp->sign_key, rdp->rc4_key_len); /* MacKeyN */
crypto_md5_update(md5, pad2, sizeof(pad2)); /* pad2 */
crypto_md5_update(md5, sha1_digest, sizeof(sha1_digest)); /* SHA1_Digest */
crypto_md5_final(md5, md5_digest);
memcpy(output, md5_digest, 8);
}
static void security_A(BYTE* master_secret, const BYTE* client_random, BYTE* server_random,
BYTE* output)
{
security_premaster_hash("A", 1, master_secret, client_random, server_random, &output[0]);
security_premaster_hash("BB", 2, master_secret, client_random, server_random, &output[16]);
security_premaster_hash("CCC", 3, master_secret, client_random, server_random, &output[32]);
}
static void security_X(BYTE* master_secret, const BYTE* client_random, BYTE* server_random,
BYTE* output)
{
security_premaster_hash("X", 1, master_secret, client_random, server_random, &output[0]);
security_premaster_hash("YY", 2, master_secret, client_random, server_random, &output[16]);
security_premaster_hash("ZZZ", 3, master_secret, client_random, server_random, &output[32]);
}
static void fips_expand_key_bits(BYTE* in, BYTE* out)
{
BYTE buf[21], c;
int i, b, p, r;
/* reverse every byte in the key */
for (i = 0; i < 21; i++)
buf[i] = fips_reverse_table[in[i]];
/* insert a zero-bit after every 7th bit */
for (i = 0, b = 0; i < 24; i++, b += 7)
{
p = b / 8;
r = b % 8;
if (r == 0)
{
out[i] = buf[p] & 0xfe;
}
else
{
/* c is accumulator */
c = buf[p] << r;
c |= buf[p + 1] >> (8 - r);
out[i] = c & 0xfe;
}
}
/* reverse every byte */
/* alter lsb so the byte has odd parity */
for (i = 0; i < 24; i++)
out[i] = fips_oddparity_table[fips_reverse_table[out[i]]];
}
BOOL security_establish_keys(const BYTE* client_random, rdpRdp* rdp)
{
BYTE pre_master_secret[48];
BYTE master_secret[48];
BYTE session_key_blob[48];
BYTE* server_random;
BYTE salt[] = { 0xD1, 0x26, 0x9E }; /* 40 bits: 3 bytes, 56 bits: 1 byte */
rdpSettings* settings;
settings = rdp->settings;
server_random = settings->ServerRandom;
if (settings->EncryptionMethods == ENCRYPTION_METHOD_FIPS)
{
CryptoSha1 sha1;
BYTE client_encrypt_key_t[CRYPTO_SHA1_DIGEST_LENGTH + 1];
BYTE client_decrypt_key_t[CRYPTO_SHA1_DIGEST_LENGTH + 1];
fprintf(stderr, "FIPS Compliant encryption level.\n");
sha1 = crypto_sha1_init();
if (!sha1)
{
fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__);
return FALSE;
}
crypto_sha1_update(sha1, client_random + 16, 16);
crypto_sha1_update(sha1, server_random + 16, 16);
crypto_sha1_final(sha1, client_encrypt_key_t);
client_encrypt_key_t[20] = client_encrypt_key_t[0];
sha1 = crypto_sha1_init();
if (!sha1)
{
fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__);
return FALSE;
}
crypto_sha1_update(sha1, client_random, 16);
crypto_sha1_update(sha1, server_random, 16);
crypto_sha1_final(sha1, client_decrypt_key_t);
client_decrypt_key_t[20] = client_decrypt_key_t[0];
sha1 = crypto_sha1_init();
if (!sha1)
{
fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__);
return FALSE;
}
crypto_sha1_update(sha1, client_decrypt_key_t, 20);
crypto_sha1_update(sha1, client_encrypt_key_t, 20);
crypto_sha1_final(sha1, rdp->fips_sign_key);
if (rdp->settings->ServerMode)
{
fips_expand_key_bits(client_encrypt_key_t, rdp->fips_decrypt_key);
fips_expand_key_bits(client_decrypt_key_t, rdp->fips_encrypt_key);
}
else
{
fips_expand_key_bits(client_encrypt_key_t, rdp->fips_encrypt_key);
fips_expand_key_bits(client_decrypt_key_t, rdp->fips_decrypt_key);
}
}
memcpy(pre_master_secret, client_random, 24);
memcpy(pre_master_secret + 24, server_random, 24);
security_A(pre_master_secret, client_random, server_random, master_secret);
security_X(master_secret, client_random, server_random, session_key_blob);
memcpy(rdp->sign_key, session_key_blob, 16);
if (rdp->settings->ServerMode)
{
security_md5_16_32_32(&session_key_blob[16], client_random,
server_random, rdp->encrypt_key);
security_md5_16_32_32(&session_key_blob[32], client_random,
server_random, rdp->decrypt_key);
}
else
{
security_md5_16_32_32(&session_key_blob[16], client_random,
server_random, rdp->decrypt_key);
security_md5_16_32_32(&session_key_blob[32], client_random,
server_random, rdp->encrypt_key);
}
if (settings->EncryptionMethods == ENCRYPTION_METHOD_40BIT)
{
memcpy(rdp->sign_key, salt, 3);
memcpy(rdp->decrypt_key, salt, 3);
memcpy(rdp->encrypt_key, salt, 3);
rdp->rc4_key_len = 8;
}
else if (settings->EncryptionMethods == ENCRYPTION_METHOD_56BIT)
{
memcpy(rdp->sign_key, salt, 1);
memcpy(rdp->decrypt_key, salt, 1);
memcpy(rdp->encrypt_key, salt, 1);
rdp->rc4_key_len = 8;
}
else if (settings->EncryptionMethods == ENCRYPTION_METHOD_128BIT)
{
rdp->rc4_key_len = 16;
}
memcpy(rdp->decrypt_update_key, rdp->decrypt_key, 16);
memcpy(rdp->encrypt_update_key, rdp->encrypt_key, 16);
rdp->decrypt_use_count = 0;
rdp->decrypt_checksum_use_count = 0;
rdp->encrypt_use_count =0;
rdp->encrypt_checksum_use_count =0;
return TRUE;
}
BOOL security_key_update(BYTE* key, BYTE* update_key, int key_len, rdpRdp* rdp)
{
BYTE sha1h[CRYPTO_SHA1_DIGEST_LENGTH];
CryptoMd5 md5;
CryptoSha1 sha1;
CryptoRc4 rc4;
BYTE salt[] = { 0xD1, 0x26, 0x9E }; /* 40 bits: 3 bytes, 56 bits: 1 byte */
sha1 = crypto_sha1_init();
if (!sha1)
{
fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__);
return FALSE;
}
crypto_sha1_update(sha1, update_key, key_len);
crypto_sha1_update(sha1, pad1, sizeof(pad1));
crypto_sha1_update(sha1, key, key_len);
crypto_sha1_final(sha1, sha1h);
md5 = crypto_md5_init();
if (!md5)
{
fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__);
return FALSE;
}
crypto_md5_update(md5, update_key, key_len);
crypto_md5_update(md5, pad2, sizeof(pad2));
crypto_md5_update(md5, sha1h, sizeof(sha1h));
crypto_md5_final(md5, key);
rc4 = crypto_rc4_init(key, key_len);
if (!rc4)
{
fprintf(stderr, "%s: unable to allocate a rc4\n", __FUNCTION__);
return FALSE;
}
crypto_rc4(rc4, key_len, key, key);
crypto_rc4_free(rc4);
if (rdp->settings->EncryptionMethods == ENCRYPTION_METHOD_40BIT)
memcpy(key, salt, 3);
else if (rdp->settings->EncryptionMethods == ENCRYPTION_METHOD_56BIT)
memcpy(key, salt, 1);
return TRUE;
}
BOOL security_encrypt(BYTE* data, int length, rdpRdp* rdp)
{
if (rdp->encrypt_use_count >= 4096)
{
security_key_update(rdp->encrypt_key, rdp->encrypt_update_key, rdp->rc4_key_len, rdp);
crypto_rc4_free(rdp->rc4_encrypt_key);
rdp->rc4_encrypt_key = crypto_rc4_init(rdp->encrypt_key, rdp->rc4_key_len);
if (!rdp->rc4_encrypt_key)
{
fprintf(stderr, "%s: unable to allocate rc4 encrypt key\n", __FUNCTION__);
return FALSE;
}
rdp->encrypt_use_count = 0;
}
crypto_rc4(rdp->rc4_encrypt_key, length, data, data);
rdp->encrypt_use_count++;
rdp->encrypt_checksum_use_count++;
return TRUE;
}
BOOL security_decrypt(BYTE* data, int length, rdpRdp* rdp)
{
if (rdp->rc4_decrypt_key == NULL)
return FALSE;
if (rdp->decrypt_use_count >= 4096)
{
security_key_update(rdp->decrypt_key, rdp->decrypt_update_key, rdp->rc4_key_len, rdp);
crypto_rc4_free(rdp->rc4_decrypt_key);
rdp->rc4_decrypt_key = crypto_rc4_init(rdp->decrypt_key, rdp->rc4_key_len);
if (!rdp->rc4_decrypt_key)
{
fprintf(stderr, "%s: unable to allocate rc4 decrypt key\n", __FUNCTION__);
return FALSE;
}
rdp->decrypt_use_count = 0;
}
crypto_rc4(rdp->rc4_decrypt_key, length, data, data);
rdp->decrypt_use_count += 1;
rdp->decrypt_checksum_use_count++;
return TRUE;
}
void security_hmac_signature(const BYTE* data, int length, BYTE* output, rdpRdp* rdp)
{
BYTE buf[20];
BYTE use_count_le[4];
security_UINT32_le(use_count_le, rdp->encrypt_use_count);
crypto_hmac_sha1_init(rdp->fips_hmac, rdp->fips_sign_key, 20);
crypto_hmac_update(rdp->fips_hmac, data, length);
crypto_hmac_update(rdp->fips_hmac, use_count_le, 4);
crypto_hmac_final(rdp->fips_hmac, buf, 20);
memmove(output, buf, 8);
}
BOOL security_fips_encrypt(BYTE* data, int length, rdpRdp* rdp)
{
crypto_des3_encrypt(rdp->fips_encrypt, length, data, data);
rdp->encrypt_use_count++;
return TRUE;
}
BOOL security_fips_decrypt(BYTE* data, int length, rdpRdp* rdp)
{
crypto_des3_decrypt(rdp->fips_decrypt, length, data, data);
return TRUE;
}
BOOL security_fips_check_signature(const BYTE* data, int length, const BYTE* sig, rdpRdp* rdp)
{
BYTE buf[20];
BYTE use_count_le[4];
security_UINT32_le(use_count_le, rdp->decrypt_use_count);
crypto_hmac_sha1_init(rdp->fips_hmac, rdp->fips_sign_key, 20);
crypto_hmac_update(rdp->fips_hmac, data, length);
crypto_hmac_update(rdp->fips_hmac, use_count_le, 4);
crypto_hmac_final(rdp->fips_hmac, buf, 20);
rdp->decrypt_use_count++;
if (memcmp(sig, buf, 8))
return FALSE;
return TRUE;
}