/*- * Copyright (c) 2003, 2004, 2005, 2006, 2007 Lev Walkin . * All rights reserved. * Redistribution and modifications are permitted subject to BSD license. */ #include "asn_internal.h" #include "INTEGER.h" #include "asn_codecs_prim.h" /* Encoder and decoder of a primitive type */ #include /* * INTEGER basic type description. */ static ber_tlv_tag_t asn_DEF_INTEGER_tags[] = { (ASN_TAG_CLASS_UNIVERSAL | (2 << 2)) }; asn_TYPE_descriptor_t asn_DEF_INTEGER = { "INTEGER", "INTEGER", ASN__PRIMITIVE_TYPE_free, INTEGER_print, asn_generic_no_constraint, ber_decode_primitive, INTEGER_encode_der, INTEGER_decode_xer, INTEGER_encode_xer, INTEGER_decode_uper, /* Unaligned PER decoder */ INTEGER_encode_uper, /* Unaligned PER encoder */ 0, /* Use generic outmost tag fetcher */ asn_DEF_INTEGER_tags, sizeof(asn_DEF_INTEGER_tags) / sizeof(asn_DEF_INTEGER_tags[0]), asn_DEF_INTEGER_tags, /* Same as above */ sizeof(asn_DEF_INTEGER_tags) / sizeof(asn_DEF_INTEGER_tags[0]), 0, /* No PER visible constraints */ 0, 0, /* No members */ 0 /* No specifics */ }; /* * Encode INTEGER type using DER. */ asn_enc_rval_t INTEGER_encode_der(asn_TYPE_descriptor_t *td, void *sptr, int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb, void *app_key) { INTEGER_t *st = (INTEGER_t *)sptr; ASN_DEBUG("%s %s as INTEGER (tm=%d)", cb?"Encoding":"Estimating", td->name, tag_mode); /* * Canonicalize integer in the buffer. * (Remove too long sign extension, remove some first 0x00 bytes) */ if(st->buf) { uint8_t *buf = st->buf; uint8_t *end1 = buf + st->size - 1; int shift; /* Compute the number of superfluous leading bytes */ for(; buf < end1; buf++) { /* * If the contents octets of an integer value encoding * consist of more than one octet, then the bits of the * first octet and bit 8 of the second octet: * a) shall not all be ones; and * b) shall not all be zero. */ switch(*buf) { case 0x00: if((buf[1] & 0x80) == 0) continue; break; case 0xff: if((buf[1] & 0x80)) continue; break; } break; } /* Remove leading superfluous bytes from the integer */ shift = buf - st->buf; if(shift) { uint8_t *nb = st->buf; uint8_t *end; st->size -= shift; /* New size, minus bad bytes */ end = nb + st->size; for(; nb < end; nb++, buf++) *nb = *buf; } } /* if(1) */ return der_encode_primitive(td, sptr, tag_mode, tag, cb, app_key); } static const asn_INTEGER_enum_map_t *INTEGER_map_enum2value(asn_INTEGER_specifics_t *specs, const char *lstart, const char *lstop); /* * INTEGER specific human-readable output. */ static ssize_t INTEGER__dump(asn_TYPE_descriptor_t *td, const INTEGER_t *st, asn_app_consume_bytes_f *cb, void *app_key, int plainOrXER) { asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics; char scratch[32]; /* Enough for 64-bit integer */ uint8_t *buf = st->buf; uint8_t *buf_end = st->buf + st->size; signed long accum; ssize_t wrote = 0; char *p; int ret; /* * Advance buf pointer until the start of the value's body. * This will make us able to process large integers using simple case, * when the actual value is small * (0x0000000000abcdef would yield a fine 0x00abcdef) */ /* Skip the insignificant leading bytes */ for(; buf < buf_end-1; buf++) { switch(*buf) { case 0x00: if((buf[1] & 0x80) == 0) continue; break; case 0xff: if((buf[1] & 0x80) != 0) continue; break; } break; } /* Simple case: the integer size is small */ if((size_t)(buf_end - buf) <= sizeof(accum)) { const asn_INTEGER_enum_map_t *el; size_t scrsize; char *scr; if(buf == buf_end) { accum = 0; } else { accum = (*buf & 0x80) ? -1 : 0; for(; buf < buf_end; buf++) accum = (accum << 8) | *buf; } el = INTEGER_map_value2enum(specs, accum); if(el) { scrsize = el->enum_len + 32; scr = (char *)alloca(scrsize); if(plainOrXER == 0) ret = snprintf(scr, scrsize, "%ld (%s)", accum, el->enum_name); else ret = snprintf(scr, scrsize, "<%s/>", el->enum_name); } else if(plainOrXER && specs && specs->strict_enumeration) { ASN_DEBUG("ASN.1 forbids dealing with " "unknown value of ENUMERATED type"); errno = EPERM; return -1; } else { scrsize = sizeof(scratch); scr = scratch; ret = snprintf(scr, scrsize, (specs && specs->field_unsigned) ?"%lu":"%ld", accum); } assert(ret > 0 && (size_t)ret < scrsize); return (cb(scr, ret, app_key) < 0) ? -1 : ret; } else if(plainOrXER && specs && specs->strict_enumeration) { /* * Here and earlier, we cannot encode the ENUMERATED values * if there is no corresponding identifier. */ ASN_DEBUG("ASN.1 forbids dealing with " "unknown value of ENUMERATED type"); errno = EPERM; return -1; } /* Output in the long xx:yy:zz... format */ /* TODO: replace with generic algorithm (Knuth TAOCP Vol 2, 4.3.1) */ for(p = scratch; buf < buf_end; buf++) { static const char *h2c = "0123456789ABCDEF"; if((p - scratch) >= (ssize_t)(sizeof(scratch) - 4)) { /* Flush buffer */ if(cb(scratch, p - scratch, app_key) < 0) return -1; wrote += p - scratch; p = scratch; } *p++ = h2c[*buf >> 4]; *p++ = h2c[*buf & 0x0F]; *p++ = 0x3a; /* ":" */ } if(p != scratch) p--; /* Remove the last ":" */ wrote += p - scratch; return (cb(scratch, p - scratch, app_key) < 0) ? -1 : wrote; } /* * INTEGER specific human-readable output. */ int INTEGER_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, asn_app_consume_bytes_f *cb, void *app_key) { const INTEGER_t *st = (const INTEGER_t *)sptr; ssize_t ret; (void)td; (void)ilevel; if(!st || !st->buf) ret = cb("", 8, app_key); else ret = INTEGER__dump(td, st, cb, app_key, 0); return (ret < 0) ? -1 : 0; } struct e2v_key { const char *start; const char *stop; asn_INTEGER_enum_map_t *vemap; unsigned int *evmap; }; static int INTEGER__compar_enum2value(const void *kp, const void *am) { const struct e2v_key *key = (const struct e2v_key *)kp; const asn_INTEGER_enum_map_t *el = (const asn_INTEGER_enum_map_t *)am; const char *ptr, *end, *name; /* Remap the element (sort by different criterion) */ el = key->vemap + key->evmap[el - key->vemap]; /* Compare strings */ for(ptr = key->start, end = key->stop, name = el->enum_name; ptr < end; ptr++, name++) { if(*ptr != *name) return *(const unsigned char *)ptr - *(const unsigned char *)name; } return name[0] ? -1 : 0; } static const asn_INTEGER_enum_map_t * INTEGER_map_enum2value(asn_INTEGER_specifics_t *specs, const char *lstart, const char *lstop) { asn_INTEGER_enum_map_t *el_found; int count = specs ? specs->map_count : 0; struct e2v_key key; const char *lp; if(!count) return NULL; /* Guaranteed: assert(lstart < lstop); */ /* Figure out the tag name */ for(lstart++, lp = lstart; lp < lstop; lp++) { switch(*lp) { case 9: case 10: case 11: case 12: case 13: case 32: /* WSP */ case 0x2f: /* '/' */ case 0x3e: /* '>' */ break; default: continue; } break; } if(lp == lstop) return NULL; /* No tag found */ lstop = lp; key.start = lstart; key.stop = lstop; key.vemap = specs->value2enum; key.evmap = specs->enum2value; el_found = (asn_INTEGER_enum_map_t *)bsearch(&key, specs->value2enum, count, sizeof(specs->value2enum[0]), INTEGER__compar_enum2value); if(el_found) { /* Remap enum2value into value2enum */ el_found = key.vemap + key.evmap[el_found - key.vemap]; } return el_found; } static int INTEGER__compar_value2enum(const void *kp, const void *am) { long a = *(const long *)kp; const asn_INTEGER_enum_map_t *el = (const asn_INTEGER_enum_map_t *)am; long b = el->nat_value; if(a < b) return -1; else if(a == b) return 0; else return 1; } const asn_INTEGER_enum_map_t * INTEGER_map_value2enum(asn_INTEGER_specifics_t *specs, long value) { int count = specs ? specs->map_count : 0; if(!count) return 0; return (asn_INTEGER_enum_map_t *)bsearch(&value, specs->value2enum, count, sizeof(specs->value2enum[0]), INTEGER__compar_value2enum); } static int INTEGER_st_prealloc(INTEGER_t *st, int min_size) { void *p = MALLOC(min_size + 1); if(p) { void *b = st->buf; st->size = 0; st->buf = p; FREEMEM(b); return 0; } else { return -1; } } /* * Decode the chunk of XML text encoding INTEGER. */ static enum xer_pbd_rval INTEGER__xer_body_decode(asn_TYPE_descriptor_t *td, void *sptr, const void *chunk_buf, size_t chunk_size) { INTEGER_t *st = (INTEGER_t *)sptr; long sign = 1; long value; const char *lp; const char *lstart = (const char *)chunk_buf; const char *lstop = lstart + chunk_size; enum { ST_SKIPSPACE, ST_SKIPSPHEX, ST_WAITDIGITS, ST_DIGITS, ST_HEXDIGIT1, ST_HEXDIGIT2, ST_HEXCOLON, ST_EXTRASTUFF } state = ST_SKIPSPACE; if(chunk_size) ASN_DEBUG("INTEGER body %ld 0x%2x..0x%2x", (long)chunk_size, *lstart, lstop[-1]); /* * We may have received a tag here. It will be processed inline. * Use strtoul()-like code and serialize the result. */ for(value = 0, lp = lstart; lp < lstop; lp++) { int lv = *lp; switch(lv) { case 0x09: case 0x0a: case 0x0d: case 0x20: switch(state) { case ST_SKIPSPACE: case ST_SKIPSPHEX: continue; case ST_HEXCOLON: if(xer_is_whitespace(lp, lstop - lp)) { lp = lstop - 1; continue; } break; default: break; } break; case 0x2d: /* '-' */ if(state == ST_SKIPSPACE) { sign = -1; state = ST_WAITDIGITS; continue; } break; case 0x2b: /* '+' */ if(state == ST_SKIPSPACE) { state = ST_WAITDIGITS; continue; } break; case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: switch(state) { case ST_DIGITS: break; case ST_SKIPSPHEX: /* Fall through */ case ST_HEXDIGIT1: value = (lv - 0x30) << 4; state = ST_HEXDIGIT2; continue; case ST_HEXDIGIT2: value += (lv - 0x30); state = ST_HEXCOLON; st->buf[st->size++] = (uint8_t)value; continue; case ST_HEXCOLON: return XPBD_BROKEN_ENCODING; default: state = ST_DIGITS; break; } { long new_value = value * 10; if(new_value / 10 != value) /* Overflow */ return XPBD_DECODER_LIMIT; value = new_value + (lv - 0x30); /* Check for two's complement overflow */ if(value < 0) { /* Check whether it is a LONG_MIN */ if(sign == -1 && (unsigned long)value == ~((unsigned long)-1 >> 1)) { sign = 1; } else { /* Overflow */ return XPBD_DECODER_LIMIT; } } } continue; case 0x3c: /* '<' */ if(state == ST_SKIPSPACE) { const asn_INTEGER_enum_map_t *el; el = INTEGER_map_enum2value( (asn_INTEGER_specifics_t *) td->specifics, lstart, lstop); if(el) { ASN_DEBUG("Found \"%s\" => %ld", el->enum_name, el->nat_value); state = ST_DIGITS; value = el->nat_value; lp = lstop - 1; continue; } ASN_DEBUG("Unknown identifier for INTEGER"); } return XPBD_BROKEN_ENCODING; case 0x3a: /* ':' */ if(state == ST_HEXCOLON) { /* This colon is expected */ state = ST_HEXDIGIT1; continue; } else if(state == ST_DIGITS) { /* The colon here means that we have * decoded the first two hexadecimal * places as a decimal value. * Switch decoding mode. */ ASN_DEBUG("INTEGER re-evaluate as hex form"); if(INTEGER_st_prealloc(st, (chunk_size/3) + 1)) return XPBD_SYSTEM_FAILURE; state = ST_SKIPSPHEX; lp = lstart - 1; continue; } else { ASN_DEBUG("state %d at %d", state, lp - lstart); break; } /* [A-Fa-f] */ case 0x41:case 0x42:case 0x43:case 0x44:case 0x45:case 0x46: case 0x61:case 0x62:case 0x63:case 0x64:case 0x65:case 0x66: switch(state) { case ST_SKIPSPHEX: case ST_SKIPSPACE: /* Fall through */ case ST_HEXDIGIT1: value = lv - ((lv < 0x61) ? 0x41 : 0x61); value += 10; value <<= 4; state = ST_HEXDIGIT2; continue; case ST_HEXDIGIT2: value += lv - ((lv < 0x61) ? 0x41 : 0x61); value += 10; st->buf[st->size++] = (uint8_t)value; state = ST_HEXCOLON; continue; case ST_DIGITS: ASN_DEBUG("INTEGER re-evaluate as hex form"); if(INTEGER_st_prealloc(st, (chunk_size/3) + 1)) return XPBD_SYSTEM_FAILURE; state = ST_SKIPSPHEX; lp = lstart - 1; continue; default: break; } break; } /* Found extra non-numeric stuff */ ASN_DEBUG("Found non-numeric 0x%2x at %d", lv, lp - lstart); state = ST_EXTRASTUFF; break; } switch(state) { case ST_DIGITS: /* Everything is cool */ break; case ST_HEXCOLON: st->buf[st->size] = 0; /* Just in case termination */ return XPBD_BODY_CONSUMED; case ST_HEXDIGIT1: case ST_HEXDIGIT2: case ST_SKIPSPHEX: return XPBD_BROKEN_ENCODING; default: if(xer_is_whitespace(lp, lstop - lp)) { if(state != ST_EXTRASTUFF) return XPBD_NOT_BODY_IGNORE; break; } else { ASN_DEBUG("INTEGER: No useful digits (state %d)", state); return XPBD_BROKEN_ENCODING; /* No digits */ } break; } value *= sign; /* Change sign, if needed */ if(asn_long2INTEGER(st, value)) return XPBD_SYSTEM_FAILURE; return XPBD_BODY_CONSUMED; } asn_dec_rval_t INTEGER_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **sptr, const char *opt_mname, const void *buf_ptr, size_t size) { return xer_decode_primitive(opt_codec_ctx, td, sptr, sizeof(INTEGER_t), opt_mname, buf_ptr, size, INTEGER__xer_body_decode); } asn_enc_rval_t INTEGER_encode_xer(asn_TYPE_descriptor_t *td, void *sptr, int ilevel, enum xer_encoder_flags_e flags, asn_app_consume_bytes_f *cb, void *app_key) { const INTEGER_t *st = (const INTEGER_t *)sptr; asn_enc_rval_t er; (void)ilevel; (void)flags; if(!st || !st->buf) _ASN_ENCODE_FAILED; er.encoded = INTEGER__dump(td, st, cb, app_key, 1); if(er.encoded < 0) _ASN_ENCODE_FAILED; _ASN_ENCODED_OK(er); } asn_dec_rval_t INTEGER_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics; asn_dec_rval_t rval = { RC_OK, 0 }; INTEGER_t *st = (INTEGER_t *)*sptr; asn_per_constraint_t *ct; int repeat; (void)opt_codec_ctx; if(!st) { st = (INTEGER_t *)(*sptr = CALLOC(1, sizeof(*st))); if(!st) _ASN_DECODE_FAILED; } if(!constraints) constraints = td->per_constraints; ct = constraints ? &constraints->value : 0; if(ct && ct->flags & APC_EXTENSIBLE) { int inext = per_get_few_bits(pd, 1); if(inext < 0) _ASN_DECODE_STARVED; if(inext) ct = 0; } FREEMEM(st->buf); st->buf = 0; st->size = 0; if(ct) { if(ct->flags & APC_SEMI_CONSTRAINED) { st->buf = (uint8_t *)CALLOC(1, 2); if(!st->buf) _ASN_DECODE_FAILED; st->size = 1; } else if(ct->flags & APC_CONSTRAINED && ct->range_bits >= 0) { size_t size = (ct->range_bits + 7) >> 3; st->buf = (uint8_t *)MALLOC(1 + size + 1); if(!st->buf) _ASN_DECODE_FAILED; st->size = size; } } /* X.691, #12.2.2 */ if(ct && ct->flags != APC_UNCONSTRAINED) { /* #10.5.6 */ ASN_DEBUG("Integer with range %d bits", ct->range_bits); if(ct->range_bits >= 0) { long value; if(ct->range_bits == 32) { long lhalf; value = per_get_few_bits(pd, 16); if(value < 0) _ASN_DECODE_STARVED; lhalf = per_get_few_bits(pd, 16); if(lhalf < 0) _ASN_DECODE_STARVED; value = (value << 16) | lhalf; } else { value = per_get_few_bits(pd, ct->range_bits); if(value < 0) _ASN_DECODE_STARVED; } ASN_DEBUG("Got value %ld + low %ld", value, ct->lower_bound); value += ct->lower_bound; if((specs && specs->field_unsigned) ? asn_ulong2INTEGER(st, value) : asn_long2INTEGER(st, value)) _ASN_DECODE_FAILED; return rval; } } else { ASN_DEBUG("Decoding unconstrained integer %s", td->name); } /* X.691, #12.2.3, #12.2.4 */ do { ssize_t len; void *p; int ret; /* Get the PER length */ len = uper_get_length(pd, -1, &repeat); if(len < 0) _ASN_DECODE_STARVED; p = REALLOC(st->buf, st->size + len + 1); if(!p) _ASN_DECODE_FAILED; st->buf = (uint8_t *)p; ret = per_get_many_bits(pd, &st->buf[st->size], 0, 8 * len); if(ret < 0) _ASN_DECODE_STARVED; st->size += len; } while(repeat); st->buf[st->size] = 0; /* JIC */ /* #12.2.3 */ if(ct && ct->lower_bound) { /* * TODO: replace by in-place arithmetics. */ long value; if(asn_INTEGER2long(st, &value)) _ASN_DECODE_FAILED; if(asn_long2INTEGER(st, value + ct->lower_bound)) _ASN_DECODE_FAILED; } return rval; } asn_enc_rval_t INTEGER_encode_uper(asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) { asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics; asn_enc_rval_t er; INTEGER_t *st = (INTEGER_t *)sptr; const uint8_t *buf; const uint8_t *end; asn_per_constraint_t *ct; long value = 0; if(!st || st->size == 0) _ASN_ENCODE_FAILED; if(!constraints) constraints = td->per_constraints; ct = constraints ? &constraints->value : 0; er.encoded = 0; if(ct) { int inext = 0; if(specs && specs->field_unsigned) { unsigned long uval; if(asn_INTEGER2ulong(st, &uval)) _ASN_ENCODE_FAILED; /* Check proper range */ if(ct->flags & APC_SEMI_CONSTRAINED) { if(uval < (unsigned long)ct->lower_bound) inext = 1; } else if(ct->range_bits >= 0) { if(uval < (unsigned long)ct->lower_bound || uval > (unsigned long)ct->upper_bound) inext = 1; } ASN_DEBUG("Value %lu (%02x/%d) lb %lu ub %lu %s", uval, st->buf[0], st->size, ct->lower_bound, ct->upper_bound, inext ? "ext" : "fix"); value = uval; } else { if(asn_INTEGER2long(st, &value)) _ASN_ENCODE_FAILED; /* Check proper range */ if(ct->flags & APC_SEMI_CONSTRAINED) { if(value < ct->lower_bound) inext = 1; } else if(ct->range_bits >= 0) { if(value < ct->lower_bound || value > ct->upper_bound) inext = 1; } ASN_DEBUG("Value %ld (%02x/%d) lb %ld ub %ld %s", value, st->buf[0], st->size, ct->lower_bound, ct->upper_bound, inext ? "ext" : "fix"); } if(ct->flags & APC_EXTENSIBLE) { if(per_put_few_bits(po, inext, 1)) _ASN_ENCODE_FAILED; if(inext) ct = 0; } else if(inext) { _ASN_ENCODE_FAILED; } } /* X.691, #12.2.2 */ if(ct && ct->range_bits >= 0) { /* #10.5.6 */ ASN_DEBUG("Encoding integer with range %d bits", ct->range_bits); if(ct->range_bits == 32) { /* TODO: extend to >32 bits */ long v = value - ct->lower_bound; if(per_put_few_bits(po, v >> 1, 31) || per_put_few_bits(po, v, 1)) _ASN_ENCODE_FAILED; } else { if(per_put_few_bits(po, value - ct->lower_bound, ct->range_bits)) _ASN_ENCODE_FAILED; } _ASN_ENCODED_OK(er); } if(ct && ct->lower_bound) { ASN_DEBUG("Adjust lower bound to %ld", ct->lower_bound); /* TODO: adjust lower bound */ _ASN_ENCODE_FAILED; } for(buf = st->buf, end = st->buf + st->size; buf < end;) { ssize_t mayEncode = uper_put_length(po, end - buf); if(mayEncode < 0) _ASN_ENCODE_FAILED; if(per_put_many_bits(po, buf, 8 * mayEncode)) _ASN_ENCODE_FAILED; buf += mayEncode; } _ASN_ENCODED_OK(er); } int asn_INTEGER2long(const INTEGER_t *iptr, long *lptr) { uint8_t *b, *end; size_t size; long l; /* Sanity checking */ if(!iptr || !iptr->buf || !lptr) { errno = EINVAL; return -1; } /* Cache the begin/end of the buffer */ b = iptr->buf; /* Start of the INTEGER buffer */ size = iptr->size; end = b + size; /* Where to stop */ if(size > sizeof(long)) { uint8_t *end1 = end - 1; /* * Slightly more advanced processing, * able to >sizeof(long) bytes, * when the actual value is small * (0x0000000000abcdef would yield a fine 0x00abcdef) */ /* Skip out the insignificant leading bytes */ for(; b < end1; b++) { switch(*b) { case 0x00: if((b[1] & 0x80) == 0) continue; break; case 0xff: if((b[1] & 0x80) != 0) continue; break; } break; } size = end - b; if(size > sizeof(long)) { /* Still cannot fit the long */ errno = ERANGE; return -1; } } /* Shortcut processing of a corner case */ if(end == b) { *lptr = 0; return 0; } /* Perform the sign initialization */ /* Actually l = -(*b >> 7); gains nothing, yet unreadable! */ if((*b >> 7)) l = -1; else l = 0; /* Conversion engine */ for(; b < end; b++) l = (l << 8) | *b; *lptr = l; return 0; } int asn_INTEGER2ulong(const INTEGER_t *iptr, unsigned long *lptr) { uint8_t *b, *end; unsigned long l; size_t size; if(!iptr || !iptr->buf || !lptr) { errno = EINVAL; return -1; } b = iptr->buf; size = iptr->size; end = b + size; /* If all extra leading bytes are zeroes, ignore them */ for(; size > sizeof(unsigned long); b++, size--) { if(*b) { /* Value won't fit unsigned long */ errno = ERANGE; return -1; } } /* Conversion engine */ for(l = 0; b < end; b++) l = (l << 8) | *b; *lptr = l; return 0; } int asn_ulong2INTEGER(INTEGER_t *st, unsigned long value) { uint8_t *buf; uint8_t *end; uint8_t *b; int shr; if(value <= LONG_MAX) return asn_long2INTEGER(st, value); buf = (uint8_t *)MALLOC(1 + sizeof(value)); if(!buf) return -1; end = buf + (sizeof(value) + 1); buf[0] = 0; for(b = buf + 1, shr = (sizeof(long)-1)*8; b < end; shr -= 8, b++) *b = (uint8_t)(value >> shr); if(st->buf) FREEMEM(st->buf); st->buf = buf; st->size = 1 + sizeof(value); return 0; } int asn_long2INTEGER(INTEGER_t *st, long value) { uint8_t *buf, *bp; uint8_t *p; uint8_t *pstart; uint8_t *pend1; int littleEndian = 1; /* Run-time detection */ int add; if(!st) { errno = EINVAL; return -1; } buf = (uint8_t *)MALLOC(sizeof(value)); if(!buf) return -1; if(*(char *)&littleEndian) { pstart = (uint8_t *)&value + sizeof(value) - 1; pend1 = (uint8_t *)&value; add = -1; } else { pstart = (uint8_t *)&value; pend1 = pstart + sizeof(value) - 1; add = 1; } /* * If the contents octet consists of more than one octet, * then bits of the first octet and bit 8 of the second octet: * a) shall not all be ones; and * b) shall not all be zero. */ for(p = pstart; p != pend1; p += add) { switch(*p) { case 0x00: if((*(p+add) & 0x80) == 0) continue; break; case 0xff: if((*(p+add) & 0x80)) continue; break; } break; } /* Copy the integer body */ for(pstart = p, bp = buf, pend1 += add; p != pend1; p += add) *bp++ = *p; if(st->buf) FREEMEM(st->buf); st->buf = buf; st->size = bp - buf; return 0; }