/* FreeRDP: A Remote Desktop Protocol Client * Routines to set a chunk of memory to a constant. * vi:ts=4 sw=4: * * (c) Copyright 2012 Hewlett-Packard Development Company, L.P. * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. You may obtain * a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express * or implied. See the License for the specific language governing * permissions and limitations under the License. * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #ifdef WITH_SSE2 # include #endif /* WITH_SSE2 */ #ifdef WITH_IPP # include #endif /* WITH_IPP */ #include "prim_internal.h" /* ========================================================================= */ PRIM_STATIC pstatus_t general_set_8u( BYTE val, BYTE *pDst, INT32 len) { memset((void *) pDst, (int) val, (size_t) len); return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ PRIM_STATIC pstatus_t general_zero( void *pDst, size_t len) { memset(pDst, 0, len); return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ #ifdef WITH_SSE2 # if !defined(WITH_IPP) || defined(ALL_PRIMITIVES_VERSIONS) PRIM_STATIC pstatus_t sse2_set_8u( BYTE val, BYTE *pDst, INT32 len) { BYTE byte, *dptr; __m128i xmm0; size_t count; if (len < 16) return general_set_8u(val, pDst, len); byte = val; dptr = (BYTE *) pDst; /* Seek 16-byte alignment. */ while ((ULONG_PTR) dptr & 0x0f) { *dptr++ = byte; if (--len == 0) return PRIMITIVES_SUCCESS; } xmm0 = _mm_set1_epi8(byte); /* Cover 256-byte chunks via SSE register stores. */ count = len >> 8; len -= count << 8; /* Do 256-byte chunks using one XMM register. */ while (count--) { _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; } /* Cover 16-byte chunks via SSE register stores. */ count = len >> 4; len -= count << 4; /* Do 16-byte chunks using one XMM register. */ while (count--) { _mm_store_si128((__m128i *) dptr, xmm0); dptr += 16; } /* Do leftover bytes. */ while (len--) *dptr++ = byte; return PRIMITIVES_SUCCESS; } # endif /* !defined(WITH_IPP) || defined(ALL_PRIMITIVES_VERSIONS) */ #endif /* WITH_SSE2 */ /* ========================================================================= */ PRIM_STATIC pstatus_t general_set_32s( INT32 val, INT32 *pDst, INT32 len) { INT32 *dptr = (INT32 *) pDst; size_t span, remaining; primitives_t *prims; if (len < 256) { while (len--) *dptr++ = val; return PRIMITIVES_SUCCESS; } /* else quadratic growth memcpy algorithm */ span = 1; *dptr = val; remaining = len - 1; prims = primitives_get(); while (remaining) { size_t thiswidth = span; if (thiswidth > remaining) thiswidth = remaining; prims->copy_8u((BYTE *) dptr, (BYTE *) (dptr + span), thiswidth<<2); remaining -= thiswidth; span <<= 1; } return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ PRIM_STATIC pstatus_t general_set_32u( UINT32 val, UINT32 *pDst, INT32 len) { UINT32 *dptr = (UINT32 *) pDst; size_t span, remaining; primitives_t *prims; if (len < 256) { while (len--) *dptr++ = val; return PRIMITIVES_SUCCESS; } /* else quadratic growth memcpy algorithm */ span = 1; *dptr = val; remaining = len - 1; prims = primitives_get(); while (remaining) { size_t thiswidth = span; if (thiswidth > remaining) thiswidth = remaining; prims->copy_8u((BYTE *) dptr, (BYTE *) (dptr + span), thiswidth<<2); remaining -= thiswidth; span <<= 1; } return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ #ifdef WITH_SSE2 # if !defined(WITH_IPP) || defined(ALL_PRIMITIVES_VERSIONS) PRIM_STATIC pstatus_t sse2_set_32u( UINT32 val, UINT32 *pDst, INT32 len) { UINT32 *dptr = (UINT32 *) pDst; __m128i xmm0; size_t count; /* If really short, just do it here. */ if (len < 32) { while (len--) *dptr++ = val; return PRIMITIVES_SUCCESS; } /* Assure we can reach 16-byte alignment. */ if (((ULONG_PTR) dptr & 0x03) != 0) { return general_set_32u(val, pDst, len); } /* Seek 16-byte alignment. */ while ((ULONG_PTR) dptr & 0x0f) { *dptr++ = val; if (--len == 0) return PRIMITIVES_SUCCESS; } xmm0 = _mm_set1_epi32(val); /* Cover 256-byte chunks via SSE register stores. */ count = len >> 6; len -= count << 6; /* Do 256-byte chunks using one XMM register. */ while (count--) { _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; } /* Cover 16-byte chunks via SSE register stores. */ count = len >> 2; len -= count << 2; /* Do 16-byte chunks using one XMM register. */ while (count--) { _mm_store_si128((__m128i *) dptr, xmm0); dptr += 4; } /* Do leftover bytes. */ while (len--) *dptr++ = val; return PRIMITIVES_SUCCESS; } /* ------------------------------------------------------------------------- */ PRIM_STATIC pstatus_t sse2_set_32s( INT32 val, INT32 *pDst, INT32 len) { UINT32 uval = *((UINT32 *) &val); return sse2_set_32u(uval, (UINT32 *) pDst, len); } # endif /* !defined(WITH_IPP) || defined(ALL_PRIMITIVES_VERSIONS) */ #endif /* WITH_SSE2 */ #ifdef WITH_IPP /* ------------------------------------------------------------------------- */ PRIM_STATIC pstatus_t ipp_wrapper_set_32u( UINT32 val, UINT32 *pDst, INT32 len) { /* A little type conversion, then use the signed version. */ INT32 sval = *((INT32 *) &val); return ippsSet_32s(sval, (INT32 *) pDst, len); } #endif /* ------------------------------------------------------------------------- */ void primitives_init_set( const primitives_hints_t *hints, primitives_t *prims) { /* Start with the default. */ prims->set_8u = general_set_8u; prims->set_32s = general_set_32s; prims->set_32u = general_set_32u; prims->zero = general_zero; /* Pick tuned versions if possible. */ #ifdef WITH_IPP prims->set_8u = (__set_8u_t) ippsSet_8u; prims->set_32s = (__set_32s_t) ippsSet_32s; prims->set_32u = (__set_32u_t) ipp_wrapper_set_32u; prims->zero = (__zero_t) ippsZero_8u; #elif defined(WITH_SSE2) if (hints->x86_flags & PRIM_X86_SSE2_AVAILABLE) { prims->set_8u = sse2_set_8u; prims->set_32s = sse2_set_32s; prims->set_32u = sse2_set_32u; } #endif } /* ------------------------------------------------------------------------- */ void primitives_deinit_set( primitives_t *prims) { /* Nothing to do. */ }