/* * FreeRDP: A Remote Desktop Protocol Implementation * Connection Sequence * * Copyright 2011 Marc-Andre Moreau * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "info.h" #include "input.h" #include "rdp.h" #include "connection.h" #include "transport.h" #include #include #include /** * Connection Sequence\n * client server\n * | |\n * |-----------------------X.224 Connection Request PDU--------------------->|\n * |<----------------------X.224 Connection Confirm PDU----------------------|\n * |-------MCS Connect-Initial PDU with GCC Conference Create Request------->|\n * |<-----MCS Connect-Response PDU with GCC Conference Create Response-------|\n * |------------------------MCS Erect Domain Request PDU-------------------->|\n * |------------------------MCS Attach User Request PDU--------------------->|\n * |<-----------------------MCS Attach User Confirm PDU----------------------|\n * |------------------------MCS Channel Join Request PDU-------------------->|\n * |<-----------------------MCS Channel Join Confirm PDU---------------------|\n * |----------------------------Security Exchange PDU----------------------->|\n * |-------------------------------Client Info PDU-------------------------->|\n * |<---------------------License Error PDU - Valid Client-------------------|\n * |<-----------------------------Demand Active PDU--------------------------|\n * |------------------------------Confirm Active PDU------------------------>|\n * |-------------------------------Synchronize PDU-------------------------->|\n * |---------------------------Control PDU - Cooperate---------------------->|\n * |------------------------Control PDU - Request Control------------------->|\n * |--------------------------Persistent Key List PDU(s)-------------------->|\n * |--------------------------------Font List PDU--------------------------->|\n * |<------------------------------Synchronize PDU---------------------------|\n * |<--------------------------Control PDU - Cooperate-----------------------|\n * |<-----------------------Control PDU - Granted Control--------------------|\n * |<-------------------------------Font Map PDU-----------------------------|\n * */ /** * * Connection Sequence * * 1. Connection Initiation: The client initiates the connection by sending the server a * Class 0 X.224 Connection Request PDU (section 2.2.1.1). The server responds with a * Class 0 X.224 Connection Confirm PDU (section 2.2.1.2). From this point, all subsequent * data sent between client and server is wrapped in an X.224 Data Protocol Data Unit (PDU). * * 2. Basic Settings Exchange: Basic settings are exchanged between the client and server by * using the MCS Connect Initial PDU (section 2.2.1.3) and MCS Connect Response PDU (section 2.2.1.4). * The Connect Initial PDU contains a Generic Conference Control (GCC) Conference Create Request, * while the Connect Response PDU contains a GCC Conference Create Response. These two GCC packets * contain concatenated blocks of settings data (such as core data, security data, and network data) * which are read by client and server. * * 3. Channel Connection: The client sends an MCS Erect Domain Request PDU (section 2.2.1.5), * followed by an MCS Attach User Request PDU (section 2.2.1.6) to attach the primary user identity * to the MCS domain. The server responds with an MCS Attach User Confirm PDU (section 2.2.1.7) * containing the User Channel ID. The client then proceeds to join the user channel, the * input/output (I/O) channel, and all of the static virtual channels (the I/O and static virtual * channel IDs are obtained from the data embedded in the GCC packets) by using multiple MCS Channel * Join Request PDUs (section 2.2.1.8). The server confirms each channel with an MCS Channel Join * Confirm PDU (section 2.2.1.9). (The client only sends a Channel Join Request after it has received * the Channel Join Confirm for the previously sent request.) * * From this point, all subsequent data sent from the client to the server is wrapped in an MCS Send * Data Request PDU, while data sent from the server to the client is wrapped in an MCS Send Data * Indication PDU. This is in addition to the data being wrapped by an X.224 Data PDU. * * 4. RDP Security Commencement: If Standard RDP Security mechanisms (section 5.3) are being employed and * encryption is in force (this is determined by examining the data embedded in the GCC Conference Create * Response packet) then the client sends a Security Exchange PDU (section 2.2.1.10) containing an encrypted * 32-byte random number to the server. This random number is encrypted with the public key of the server * as described in section 5.3.4.1 (the server's public key, as well as a 32-byte server-generated random * number, are both obtained from the data embedded in the GCC Conference Create Response packet). The client * and server then utilize the two 32-byte random numbers to generate session keys which are used to encrypt * and validate the integrity of subsequent RDP traffic. * * From this point, all subsequent RDP traffic can be encrypted and a security header is included with the * data if encryption is in force. (The Client Info PDU (section 2.2.1.11) and licensing PDUs ([MS-RDPELE] * section 2.2.2) are an exception in that they always have a security header). The Security Header follows * the X.224 and MCS Headers and indicates whether the attached data is encrypted. Even if encryption is in * force, server-to-client traffic may not always be encrypted, while client-to-server traffic must always be * encrypted (encryption of licensing PDUs is optional, however). * * 5. Secure Settings Exchange: Secure client data (such as the username, password, and auto-reconnect cookie) * is sent to the server by using the Client Info PDU (section 2.2.1.11). * * 6. Optional Connect-Time Auto-Detection: During the optional connect-time auto-detect phase the goal is to * determine characteristics of the network, such as the round-trip latency time and the bandwidth of the link * between the server and client. This is accomplished by exchanging a collection of PDUs (specified in section 2.2.1.4) * over a predetermined period of time with enough data to ensure that the results are statistically relevant. * * 7. Licensing: The goal of the licensing exchange is to transfer a license from the server to the client. * The client stores this license and on subsequent connections sends the license to the server for validation. * However, in some situations the client may not be issued a license to store. In effect, the packets exchanged * during this phase of the protocol depend on the licensing mechanisms employed by the server. Within the context * of this document, it is assumed that the client will not be issued a license to store. For details regarding * more advanced licensing scenarios that take place during the Licensing Phase, see [MS-RDPELE] section 1.3. * * 8. Optional Multitransport Bootstrapping: After the connection has been secured and the Licensing Phase has run * to completion, the server can choose to initiate multitransport connections ([MS-RDPEMT] section 1.3). * The Initiate Multitransport Request PDU (section 2.2.15.1) is sent by the server to the client and results * in the out-of-band creation of a multitransport connection using messages from the RDP-UDP, TLS, DTLS, and * multitransport protocols ([MS-RDPEMT] section 1.3.1). * * 9. Capabilities Exchange: The server sends the set of capabilities it supports to the client in a Demand Active PDU * (section 2.2.1.13.1). The client responds with its capabilities by sending a Confirm Active PDU (section 2.2.1.13.2). * * 10. Connection Finalization: The client and server exchange PDUs to finalize the connection details. The client-to-server * PDUs sent during this phase have no dependencies on any of the server-to-client PDUs; they may be sent as a single batch, * provided that sequencing is maintained. * * - The Client Synchronize PDU (section 2.2.1.14) is sent after transmitting the Confirm Active PDU. * - The Client Control (Cooperate) PDU (section 2.2.1.15) is sent after transmitting the Client Synchronize PDU. * - The Client Control (Request Control) PDU (section 2.2.1.16) is sent after transmitting the Client Control (Cooperate) PDU. * - The optional Persistent Key List PDUs (section 2.2.1.17) are sent after transmitting the Client Control (Request Control) PDU. * - The Font List PDU (section 2.2.1.18) is sent after transmitting the Persistent Key List PDUs or, if the Persistent Key List * PDUs were not sent, it is sent after transmitting the Client Control (Request Control) PDU (section 2.2.1.16). * * The server-to-client PDUs sent during the Connection Finalization Phase have dependencies on the client-to-server PDUs. * * - The optional Monitor Layout PDU (section 2.2.12.1) has no dependency on any client-to-server PDUs and is sent after the Demand Active PDU. * - The Server Synchronize PDU (section 2.2.1.19) is sent in response to the Confirm Active PDU. * - The Server Control (Cooperate) PDU (section 2.2.1.20) is sent after transmitting the Server Synchronize PDU. * - The Server Control (Granted Control) PDU (section 2.2.1.21) is sent in response to the Client Control (Request Control) PDU. * - The Font Map PDU (section 2.2.1.22) is sent in response to the Font List PDU. * * Once the client has sent the Confirm Active PDU, it can start sending mouse and keyboard input to the server, and upon receipt * of the Font List PDU the server can start sending graphics output to the client. * * Besides input and graphics data, other data that can be exchanged between client and server after the connection has been * finalized includes connection management information and virtual channel messages (exchanged between client-side plug-ins * and server-side applications). */ /** * Establish RDP Connection based on the settings given in the 'rdp' parameter. * @msdn{cc240452} * @param rdp RDP module * @return true if the connection succeeded. FALSE otherwise. */ BOOL rdp_client_connect(rdpRdp* rdp) { rdpSettings* settings = rdp->settings; if (rdp->settingsCopy) { freerdp_settings_free(rdp->settingsCopy); rdp->settingsCopy = NULL; } rdp->settingsCopy = freerdp_settings_clone(settings); if (!rdp->settingsCopy) return FALSE; nego_init(rdp->nego); nego_set_target(rdp->nego, settings->ServerHostname, settings->ServerPort); if (settings->GatewayEnabled) { char* user = NULL; char* domain = NULL; char* cookie = NULL; int user_length = 0; int domain_length = 0; int cookie_length = 0; if (settings->Username) { user = settings->Username; user_length = strlen(settings->Username); } if (settings->Domain) domain = settings->Domain; else domain = settings->ComputerName; domain_length = strlen(domain); cookie_length = domain_length + 1 + user_length; cookie = (char*) malloc(cookie_length + 1); CopyMemory(cookie, domain, domain_length); CharUpperBuffA(cookie, domain_length); cookie[domain_length] = '\\'; if (settings->Username) CopyMemory(&cookie[domain_length + 1], user, user_length); cookie[cookie_length] = '\0'; nego_set_cookie(rdp->nego, cookie); free(cookie); } else { nego_set_cookie(rdp->nego, settings->Username); } nego_set_send_preconnection_pdu(rdp->nego, settings->SendPreconnectionPdu); nego_set_preconnection_id(rdp->nego, settings->PreconnectionId); nego_set_preconnection_blob(rdp->nego, settings->PreconnectionBlob); nego_set_negotiation_enabled(rdp->nego, settings->NegotiateSecurityLayer); nego_set_restricted_admin_mode_required(rdp->nego, settings->RestrictedAdminModeRequired); nego_set_gateway_enabled(rdp->nego, settings->GatewayEnabled); nego_set_gateway_bypass_local(rdp->nego, settings->GatewayBypassLocal); nego_enable_rdp(rdp->nego, settings->RdpSecurity); nego_enable_tls(rdp->nego, settings->TlsSecurity); nego_enable_nla(rdp->nego, settings->NlaSecurity); nego_enable_ext(rdp->nego, settings->ExtSecurity); if (settings->MstscCookieMode) settings->CookieMaxLength = MSTSC_COOKIE_MAX_LENGTH; nego_set_cookie_max_length(rdp->nego, settings->CookieMaxLength); if (settings->LoadBalanceInfo) nego_set_routing_token(rdp->nego, settings->LoadBalanceInfo, settings->LoadBalanceInfoLength); if (!nego_connect(rdp->nego)) { fprintf(stderr, "Error: protocol security negotiation or connection failure\n"); return FALSE; } if ((rdp->nego->selected_protocol & PROTOCOL_TLS) || (rdp->nego->selected_protocol == PROTOCOL_RDP)) { if ((settings->Username != NULL) && ((settings->Password != NULL) || (settings->RedirectionPassword != NULL && settings->RedirectionPasswordLength > 0))) settings->AutoLogonEnabled = TRUE; } rdp_set_blocking_mode(rdp, FALSE); rdp_client_transition_to_state(rdp, CONNECTION_STATE_NEGO); rdp->finalize_sc_pdus = 0; if (!mcs_send_connect_initial(rdp->mcs)) { if (!connectErrorCode) { connectErrorCode = MCSCONNECTINITIALERROR; } if (!freerdp_get_last_error(rdp->context)) { freerdp_set_last_error(rdp->context, FREERDP_ERROR_MCS_CONNECT_INITIAL_ERROR); } fprintf(stderr, "Error: unable to send MCS Connect Initial\n"); return FALSE; } while (rdp->state != CONNECTION_STATE_ACTIVE) { if (rdp_check_fds(rdp) < 0) return FALSE; } return TRUE; } BOOL rdp_client_disconnect(rdpRdp* rdp) { return transport_disconnect(rdp->transport); } BOOL rdp_client_redirect(rdpRdp* rdp) { BOOL status; rdpSettings* settings = rdp->settings; rdp_client_disconnect(rdp); rdp_reset(rdp); rdp_redirection_apply_settings(rdp); if (settings->RedirectionFlags & LB_LOAD_BALANCE_INFO) { nego_set_routing_token(rdp->nego, settings->LoadBalanceInfo, settings->LoadBalanceInfoLength); } else { if (settings->RedirectionFlags & LB_TARGET_FQDN) { free(settings->ServerHostname); settings->ServerHostname = _strdup(settings->RedirectionTargetFQDN); } else if (settings->RedirectionFlags & LB_TARGET_NET_ADDRESS) { free(settings->ServerHostname); settings->ServerHostname = _strdup(settings->TargetNetAddress); } else if (settings->RedirectionFlags & LB_TARGET_NETBIOS_NAME) { free(settings->ServerHostname); settings->ServerHostname = _strdup(settings->RedirectionTargetNetBiosName); } } if (settings->RedirectionFlags & LB_USERNAME) { free(settings->Username); settings->Username = _strdup(settings->RedirectionUsername); } if (settings->RedirectionFlags & LB_DOMAIN) { free(settings->Domain); settings->Domain = _strdup(settings->RedirectionDomain); } status = rdp_client_connect(rdp); return status; } BOOL rdp_client_reconnect(rdpRdp* rdp) { UINT32 i; transport_disconnect(rdp->transport); mcs_free(rdp->mcs); nego_free(rdp->nego); license_free(rdp->license); transport_free(rdp->transport); /* Reset virtual channel status */ for (i = 0; i < rdp->mcs->channelCount; i++) { rdp->mcs->channels[i].joined = FALSE; } rdp->transport = transport_new(rdp->settings); rdp->license = license_new(rdp); rdp->nego = nego_new(rdp->transport); rdp->mcs = mcs_new(rdp->transport); rdp->transport->layer = TRANSPORT_LAYER_TCP; return rdp_client_connect(rdp); } static BYTE fips_ivec[8] = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF }; static BOOL rdp_client_establish_keys(rdpRdp* rdp) { BYTE* mod; BYTE* exp; wStream* s; UINT32 length; UINT32 key_len; BYTE crypt_client_random[256 + 8]; if (!rdp->settings->DisableEncryption) { /* no RDP encryption */ return TRUE; } /* encrypt client random */ if (rdp->settings->ClientRandom) free(rdp->settings->ClientRandom); rdp->settings->ClientRandom = malloc(CLIENT_RANDOM_LENGTH); if (!rdp->settings->ClientRandom) return FALSE; ZeroMemory(crypt_client_random, sizeof(crypt_client_random)); crypto_nonce(rdp->settings->ClientRandom, CLIENT_RANDOM_LENGTH); key_len = rdp->settings->RdpServerCertificate->cert_info.ModulusLength; mod = rdp->settings->RdpServerCertificate->cert_info.Modulus; exp = rdp->settings->RdpServerCertificate->cert_info.exponent; crypto_rsa_public_encrypt(rdp->settings->ClientRandom, CLIENT_RANDOM_LENGTH, key_len, mod, exp, crypt_client_random); /* send crypt client random to server */ length = RDP_PACKET_HEADER_MAX_LENGTH + RDP_SECURITY_HEADER_LENGTH + 4 + key_len + 8; s = Stream_New(NULL, length); rdp_write_header(rdp, s, length, MCS_GLOBAL_CHANNEL_ID); rdp_write_security_header(s, SEC_EXCHANGE_PKT); length = key_len + 8; Stream_Write_UINT32(s, length); Stream_Write(s, crypt_client_random, length); Stream_SealLength(s); if (transport_write(rdp->mcs->transport, s) < 0) return FALSE; Stream_Free(s, TRUE); /* now calculate encrypt / decrypt and update keys */ if (!security_establish_keys(rdp->settings->ClientRandom, rdp)) return FALSE; rdp->do_crypt = TRUE; if (rdp->settings->SaltedChecksum) rdp->do_secure_checksum = TRUE; if (rdp->settings->EncryptionMethods == ENCRYPTION_METHOD_FIPS) { rdp->fips_encrypt = crypto_des3_encrypt_init(rdp->fips_encrypt_key, fips_ivec); if (!rdp->fips_encrypt) { fprintf(stderr, "%s: unable to allocate des3 encrypt key\n", __FUNCTION__); return FALSE; } rdp->fips_decrypt = crypto_des3_decrypt_init(rdp->fips_decrypt_key, fips_ivec); if (!rdp->fips_decrypt) { fprintf(stderr, "%s: unable to allocate des3 decrypt key\n", __FUNCTION__); return FALSE; } rdp->fips_hmac = crypto_hmac_new(); if (!rdp->fips_hmac) { fprintf(stderr, "%s: unable to allocate fips hmac\n", __FUNCTION__); return FALSE; } return TRUE; } rdp->rc4_decrypt_key = crypto_rc4_init(rdp->decrypt_key, rdp->rc4_key_len); if (!rdp->rc4_decrypt_key) { fprintf(stderr, "%s: unable to allocate rc4 decrypt key\n", __FUNCTION__); return FALSE; } rdp->rc4_encrypt_key = crypto_rc4_init(rdp->encrypt_key, rdp->rc4_key_len); if (!rdp->rc4_encrypt_key) { fprintf(stderr, "%s: unable to allocate rc4 encrypt key\n", __FUNCTION__); return FALSE; } return TRUE; } BOOL rdp_server_establish_keys(rdpRdp* rdp, wStream* s) { BYTE client_random[64]; /* Should be only 32 after successful decryption, but on failure might take up to 64 bytes. */ BYTE crypt_client_random[256 + 8]; UINT32 rand_len, key_len; UINT16 channel_id, length, sec_flags; BYTE* mod; BYTE* priv_exp; if (!rdp->settings->DisableEncryption) { /* No RDP Security. */ return TRUE; } if (!rdp_read_header(rdp, s, &length, &channel_id)) { fprintf(stderr, "%s: invalid RDP header\n", __FUNCTION__); return FALSE; } if (!rdp_read_security_header(s, &sec_flags)) return FALSE; if ((sec_flags & SEC_EXCHANGE_PKT) == 0) { fprintf(stderr, "%s: missing SEC_EXCHANGE_PKT in security header\n", __FUNCTION__); return FALSE; } if (Stream_GetRemainingLength(s) < 4) return FALSE; Stream_Read_UINT32(s, rand_len); /* rand_len already includes 8 bytes of padding */ if (Stream_GetRemainingLength(s) < rand_len) return FALSE; key_len = rdp->settings->RdpServerRsaKey->ModulusLength; if (rand_len != key_len + 8) { fprintf(stderr, "%s: invalid encrypted client random length\n", __FUNCTION__); return FALSE; } ZeroMemory(crypt_client_random, sizeof(crypt_client_random)); Stream_Read(s, crypt_client_random, rand_len); mod = rdp->settings->RdpServerRsaKey->Modulus; priv_exp = rdp->settings->RdpServerRsaKey->PrivateExponent; crypto_rsa_private_decrypt(crypt_client_random, rand_len - 8, key_len, mod, priv_exp, client_random); /* now calculate encrypt / decrypt and update keys */ if (!security_establish_keys(client_random, rdp)) { return FALSE; } rdp->do_crypt = TRUE; if (rdp->settings->SaltedChecksum) rdp->do_secure_checksum = TRUE; if (rdp->settings->EncryptionMethods == ENCRYPTION_METHOD_FIPS) { rdp->fips_encrypt = crypto_des3_encrypt_init(rdp->fips_encrypt_key, fips_ivec); if (!rdp->fips_encrypt) { fprintf(stderr, "%s: unable to allocate des3 encrypt key\n", __FUNCTION__); return FALSE; } rdp->fips_decrypt = crypto_des3_decrypt_init(rdp->fips_decrypt_key, fips_ivec); if (!rdp->fips_decrypt) { fprintf(stderr, "%s: unable to allocate des3 decrypt key\n", __FUNCTION__); return FALSE; } rdp->fips_hmac = crypto_hmac_new(); if (!rdp->fips_hmac) { fprintf(stderr, "%s: unable to allocate fips hmac\n", __FUNCTION__); return FALSE; } return TRUE; } rdp->rc4_decrypt_key = crypto_rc4_init(rdp->decrypt_key, rdp->rc4_key_len); if (!rdp->rc4_decrypt_key) { fprintf(stderr, "%s: unable to allocate rc4 decrypt key\n", __FUNCTION__); return FALSE; } rdp->rc4_encrypt_key = crypto_rc4_init(rdp->encrypt_key, rdp->rc4_key_len); if (!rdp->rc4_encrypt_key) { fprintf(stderr, "%s: unable to allocate rc4 encrypt key\n", __FUNCTION__); return FALSE; } return TRUE; } BOOL rdp_client_connect_mcs_connect_response(rdpRdp* rdp, wStream* s) { if (!mcs_recv_connect_response(rdp->mcs, s)) { fprintf(stderr, "rdp_client_connect_mcs_connect_response: mcs_recv_connect_response failed\n"); return FALSE; } if (!mcs_send_erect_domain_request(rdp->mcs)) return FALSE; if (!mcs_send_attach_user_request(rdp->mcs)) return FALSE; rdp_client_transition_to_state(rdp, CONNECTION_STATE_MCS_ATTACH_USER); return TRUE; } BOOL rdp_client_connect_mcs_attach_user_confirm(rdpRdp* rdp, wStream* s) { if (!mcs_recv_attach_user_confirm(rdp->mcs, s)) return FALSE; if (!mcs_send_channel_join_request(rdp->mcs, rdp->mcs->userId)) return FALSE; rdp_client_transition_to_state(rdp, CONNECTION_STATE_MCS_CHANNEL_JOIN); return TRUE; } BOOL rdp_client_connect_mcs_channel_join_confirm(rdpRdp* rdp, wStream* s) { UINT32 i; UINT16 channelId; BOOL allJoined = TRUE; rdpMcs* mcs = rdp->mcs; if (!mcs_recv_channel_join_confirm(mcs, s, &channelId)) return FALSE; if (!mcs->userChannelJoined) { if (channelId != mcs->userId) return FALSE; mcs->userChannelJoined = TRUE; if (!mcs_send_channel_join_request(mcs, MCS_GLOBAL_CHANNEL_ID)) return FALSE; } else if (!mcs->globalChannelJoined) { if (channelId != MCS_GLOBAL_CHANNEL_ID) return FALSE; mcs->globalChannelJoined = TRUE; if (mcs->messageChannelId != 0) { if (!mcs_send_channel_join_request(mcs, mcs->messageChannelId)) return FALSE; allJoined = FALSE; } else { if (mcs->channelCount > 0) { if (!mcs_send_channel_join_request(mcs, mcs->channels[0].ChannelId)) return FALSE; allJoined = FALSE; } } } else if ((mcs->messageChannelId != 0) && !mcs->messageChannelJoined) { if (channelId != mcs->messageChannelId) return FALSE; mcs->messageChannelJoined = TRUE; if (mcs->channelCount > 0) { if (!mcs_send_channel_join_request(mcs, mcs->channels[0].ChannelId)) return FALSE; allJoined = FALSE; } } else { for (i = 0; i < mcs->channelCount; i++) { if (mcs->channels[i].joined) continue; if (mcs->channels[i].ChannelId != channelId) return FALSE; mcs->channels[i].joined = TRUE; break; } if (i + 1 < mcs->channelCount) { if (!mcs_send_channel_join_request(mcs, mcs->channels[i + 1].ChannelId)) return FALSE; allJoined = FALSE; } } if (mcs->userChannelJoined && mcs->globalChannelJoined && allJoined) { if (!rdp_client_establish_keys(rdp)) return FALSE; if (!rdp_send_client_info(rdp)) return FALSE; rdp_client_transition_to_state(rdp, CONNECTION_STATE_LICENSING); } return TRUE; } BOOL rdp_client_connect_auto_detect(rdpRdp* rdp, wStream *s) { BYTE* mark; UINT16 length; UINT16 channelId; /* If the MCS message channel has been joined... */ if (rdp->mcs->messageChannelId != 0) { /* Process any MCS message channel PDUs. */ Stream_GetPointer(s, mark); if (rdp_read_header(rdp, s, &length, &channelId)) { if (channelId == rdp->mcs->messageChannelId) { if (rdp_recv_message_channel_pdu(rdp, s) == 0) return TRUE; } } Stream_SetPointer(s, mark); } return FALSE; } int rdp_client_connect_license(rdpRdp* rdp, wStream* s) { int status; status = license_recv(rdp->license, s); if (status < 0) return status; if (rdp->license->state == LICENSE_STATE_ABORTED) { fprintf(stderr, "license connection sequence aborted.\n"); return -1; } if (rdp->license->state == LICENSE_STATE_COMPLETED) { rdp_client_transition_to_state(rdp, CONNECTION_STATE_CAPABILITIES_EXCHANGE); } return 0; } int rdp_client_connect_demand_active(rdpRdp* rdp, wStream* s) { BYTE* mark; UINT16 width; UINT16 height; width = rdp->settings->DesktopWidth; height = rdp->settings->DesktopHeight; Stream_GetPointer(s, mark); if (!rdp_recv_demand_active(rdp, s)) { UINT16 channelId; Stream_SetPointer(s, mark); rdp_recv_get_active_header(rdp, s, &channelId); /* Was Stream_Seek(s, RDP_PACKET_HEADER_MAX_LENGTH); * but the headers aren't always that length, * so that could result in a bad offset. */ return rdp_recv_out_of_sequence_pdu(rdp, s); } if (rdp->disconnect) return 0; if (!rdp_send_confirm_active(rdp)) return -1; input_register_client_callbacks(rdp->input); /** * The server may request a different desktop size during Deactivation-Reactivation sequence. * In this case, the UI should be informed and do actual window resizing at this point. */ if (width != rdp->settings->DesktopWidth || height != rdp->settings->DesktopHeight) { IFCALL(rdp->update->DesktopResize, rdp->update->context); } rdp_client_transition_to_state(rdp, CONNECTION_STATE_FINALIZATION); return rdp_client_connect_finalize(rdp); } int rdp_client_connect_finalize(rdpRdp* rdp) { /** * [MS-RDPBCGR] 1.3.1.1 - 8. * The client-to-server PDUs sent during this phase have no dependencies on any of the server-to- * client PDUs; they may be sent as a single batch, provided that sequencing is maintained. */ if (!rdp_send_client_synchronize_pdu(rdp)) return -1; if (!rdp_send_client_control_pdu(rdp, CTRLACTION_COOPERATE)) return -1; if (!rdp_send_client_control_pdu(rdp, CTRLACTION_REQUEST_CONTROL)) return -1; /** * [MS-RDPBCGR] 2.2.1.17 * Client persistent key list must be sent if a bitmap is * stored in persistent bitmap cache or the server has advertised support for bitmap * host cache and a deactivation reactivation sequence is *not* in progress. */ if (!rdp->deactivation_reactivation && rdp->settings->BitmapCachePersistEnabled) { if (!rdp_send_client_persistent_key_list_pdu(rdp)) return -1; } if (!rdp_send_client_font_list_pdu(rdp, FONTLIST_FIRST | FONTLIST_LAST)) return -1; return 0; } int rdp_client_transition_to_state(rdpRdp* rdp, int state) { int status = 0; switch (state) { case CONNECTION_STATE_INITIAL: rdp->state = CONNECTION_STATE_INITIAL; break; case CONNECTION_STATE_NEGO: rdp->state = CONNECTION_STATE_NEGO; break; case CONNECTION_STATE_MCS_CONNECT: rdp->state = CONNECTION_STATE_MCS_CONNECT; break; case CONNECTION_STATE_MCS_ERECT_DOMAIN: rdp->state = CONNECTION_STATE_MCS_ERECT_DOMAIN; break; case CONNECTION_STATE_MCS_ATTACH_USER: rdp->state = CONNECTION_STATE_MCS_ATTACH_USER; break; case CONNECTION_STATE_MCS_CHANNEL_JOIN: rdp->state = CONNECTION_STATE_MCS_CHANNEL_JOIN; break; case CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT: rdp->state = CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT; break; case CONNECTION_STATE_SECURE_SETTINGS_EXCHANGE: rdp->state = CONNECTION_STATE_SECURE_SETTINGS_EXCHANGE; break; case CONNECTION_STATE_CONNECT_TIME_AUTO_DETECT: rdp->state = CONNECTION_STATE_CONNECT_TIME_AUTO_DETECT; break; case CONNECTION_STATE_LICENSING: rdp->state = CONNECTION_STATE_LICENSING; break; case CONNECTION_STATE_MULTITRANSPORT_BOOTSTRAPPING: rdp->state = CONNECTION_STATE_MULTITRANSPORT_BOOTSTRAPPING; break; case CONNECTION_STATE_CAPABILITIES_EXCHANGE: rdp->state = CONNECTION_STATE_CAPABILITIES_EXCHANGE; break; case CONNECTION_STATE_FINALIZATION: rdp->state = CONNECTION_STATE_FINALIZATION; update_reset_state(rdp->update); rdp->finalize_sc_pdus = 0; break; case CONNECTION_STATE_ACTIVE: rdp->state = CONNECTION_STATE_ACTIVE; break; default: status = -1; break; } return status; } BOOL rdp_server_accept_nego(rdpRdp* rdp, wStream* s) { BOOL status; rdpSettings* settings = rdp->settings; rdpNego *nego = rdp->nego; transport_set_blocking_mode(rdp->transport, TRUE); if (!nego_read_request(nego, s)) return FALSE; nego->selected_protocol = 0; fprintf(stderr, "Client Security: NLA:%d TLS:%d RDP:%d\n", (nego->requested_protocols & PROTOCOL_NLA) ? 1 : 0, (nego->requested_protocols & PROTOCOL_TLS) ? 1 : 0, (nego->requested_protocols == PROTOCOL_RDP) ? 1 : 0 ); fprintf(stderr, "Server Security: NLA:%d TLS:%d RDP:%d\n", settings->NlaSecurity, settings->TlsSecurity, settings->RdpSecurity); if ((settings->NlaSecurity) && (nego->requested_protocols & PROTOCOL_NLA)) { nego->selected_protocol = PROTOCOL_NLA; } else if ((settings->TlsSecurity) && (nego->requested_protocols & PROTOCOL_TLS)) { nego->selected_protocol = PROTOCOL_TLS; } else if ((settings->RdpSecurity) && (nego->selected_protocol == PROTOCOL_RDP)) { nego->selected_protocol = PROTOCOL_RDP; } else { fprintf(stderr, "Protocol security negotiation failure\n"); } fprintf(stderr, "Negotiated Security: NLA:%d TLS:%d RDP:%d\n", (nego->selected_protocol & PROTOCOL_NLA) ? 1 : 0, (nego->selected_protocol & PROTOCOL_TLS) ? 1 : 0, (nego->selected_protocol == PROTOCOL_RDP) ? 1: 0 ); if (!nego_send_negotiation_response(nego)) return FALSE; status = FALSE; if (nego->selected_protocol & PROTOCOL_NLA) status = transport_accept_nla(rdp->transport); else if (nego->selected_protocol & PROTOCOL_TLS) status = transport_accept_tls(rdp->transport); else if (nego->selected_protocol == PROTOCOL_RDP) /* 0 */ status = transport_accept_rdp(rdp->transport); if (!status) return FALSE; transport_set_blocking_mode(rdp->transport, FALSE); rdp_server_transition_to_state(rdp, CONNECTION_STATE_NEGO); return TRUE; } BOOL rdp_server_accept_mcs_connect_initial(rdpRdp* rdp, wStream* s) { UINT32 i; rdpMcs* mcs = rdp->mcs; if (!mcs_recv_connect_initial(mcs, s)) return FALSE; fprintf(stderr, "Accepted client: %s\n", rdp->settings->ClientHostname); fprintf(stderr, "Accepted channels:"); for (i = 0; i < mcs->channelCount; i++) { fprintf(stderr, " %s", mcs->channels[i].Name); } fprintf(stderr, "\n"); if (!mcs_send_connect_response(mcs)) return FALSE; rdp_server_transition_to_state(rdp, CONNECTION_STATE_MCS_CONNECT); return TRUE; } BOOL rdp_server_accept_mcs_erect_domain_request(rdpRdp* rdp, wStream* s) { if (!mcs_recv_erect_domain_request(rdp->mcs, s)) return FALSE; rdp_server_transition_to_state(rdp, CONNECTION_STATE_MCS_ERECT_DOMAIN); return TRUE; } BOOL rdp_server_accept_mcs_attach_user_request(rdpRdp* rdp, wStream* s) { if (!mcs_recv_attach_user_request(rdp->mcs, s)) return FALSE; if (!mcs_send_attach_user_confirm(rdp->mcs)) return FALSE; rdp_server_transition_to_state(rdp, CONNECTION_STATE_MCS_ATTACH_USER); return TRUE; } BOOL rdp_server_accept_mcs_channel_join_request(rdpRdp* rdp, wStream* s) { UINT32 i; UINT16 channelId; BOOL allJoined = TRUE; rdpMcs* mcs = rdp->mcs; if (!mcs_recv_channel_join_request(mcs, s, &channelId)) return FALSE; if (!mcs_send_channel_join_confirm(mcs, channelId)) return FALSE; if (channelId == mcs->userId) mcs->userChannelJoined = TRUE; else if (channelId == MCS_GLOBAL_CHANNEL_ID) mcs->globalChannelJoined = TRUE; for (i = 0; i < mcs->channelCount; i++) { if (mcs->channels[i].ChannelId == channelId) mcs->channels[i].joined = TRUE; if (!mcs->channels[i].joined) allJoined = FALSE; } if ((mcs->userChannelJoined) && (mcs->globalChannelJoined) && allJoined) { rdp_server_transition_to_state(rdp, CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT); } return TRUE; } BOOL rdp_server_accept_confirm_active(rdpRdp* rdp, wStream* s) { if (rdp->state != CONNECTION_STATE_CAPABILITIES_EXCHANGE) return FALSE; if (!rdp_recv_confirm_active(rdp, s)) return FALSE; rdp_server_transition_to_state(rdp, CONNECTION_STATE_FINALIZATION); if (!rdp_send_server_synchronize_pdu(rdp)) return FALSE; if (!rdp_send_server_control_cooperate_pdu(rdp)) return FALSE; return TRUE; } BOOL rdp_server_reactivate(rdpRdp* rdp) { if (!rdp_send_deactivate_all(rdp)) return FALSE; rdp_server_transition_to_state(rdp, CONNECTION_STATE_CAPABILITIES_EXCHANGE); if (!rdp_send_demand_active(rdp)) return FALSE; rdp->AwaitCapabilities = TRUE; return TRUE; } int rdp_server_transition_to_state(rdpRdp* rdp, int state) { int status = 0; freerdp_peer* client = NULL; if (rdp->state >= CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT) client = rdp->context->peer; if (rdp->state < CONNECTION_STATE_ACTIVE) { if (client) client->activated = FALSE; } switch (state) { case CONNECTION_STATE_INITIAL: rdp->state = CONNECTION_STATE_INITIAL; break; case CONNECTION_STATE_NEGO: rdp->state = CONNECTION_STATE_NEGO; break; case CONNECTION_STATE_MCS_CONNECT: rdp->state = CONNECTION_STATE_MCS_CONNECT; break; case CONNECTION_STATE_MCS_ERECT_DOMAIN: rdp->state = CONNECTION_STATE_MCS_ERECT_DOMAIN; break; case CONNECTION_STATE_MCS_ATTACH_USER: rdp->state = CONNECTION_STATE_MCS_ATTACH_USER; break; case CONNECTION_STATE_MCS_CHANNEL_JOIN: rdp->state = CONNECTION_STATE_MCS_CHANNEL_JOIN; break; case CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT: rdp->state = CONNECTION_STATE_RDP_SECURITY_COMMENCEMENT; break; case CONNECTION_STATE_SECURE_SETTINGS_EXCHANGE: rdp->state = CONNECTION_STATE_SECURE_SETTINGS_EXCHANGE; break; case CONNECTION_STATE_CONNECT_TIME_AUTO_DETECT: rdp->state = CONNECTION_STATE_CONNECT_TIME_AUTO_DETECT; break; case CONNECTION_STATE_LICENSING: rdp->state = CONNECTION_STATE_LICENSING; break; case CONNECTION_STATE_MULTITRANSPORT_BOOTSTRAPPING: rdp->state = CONNECTION_STATE_MULTITRANSPORT_BOOTSTRAPPING; break; case CONNECTION_STATE_CAPABILITIES_EXCHANGE: rdp->state = CONNECTION_STATE_CAPABILITIES_EXCHANGE; rdp->AwaitCapabilities = FALSE; break; case CONNECTION_STATE_FINALIZATION: rdp->state = CONNECTION_STATE_FINALIZATION; rdp->finalize_sc_pdus = 0; break; case CONNECTION_STATE_ACTIVE: rdp->state = CONNECTION_STATE_ACTIVE; update_reset_state(rdp->update); if (client) { if (!client->connected) { /** * PostConnect should only be called once and should not * be called after a reactivation sequence. */ IFCALLRET(client->PostConnect, client->connected, client); if (!client->connected) return -1; } IFCALLRET(client->Activate, client->activated, client); if (!client->activated) return -1; } break; default: status = -1; break; } return status; }