/** * FreeRDP: A Remote Desktop Protocol Implementation * RDP Security * * Copyright 2011 Marc-Andre Moreau * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "security.h" /* 0x36 repeated 40 times */ static const BYTE pad1[40] = { "\x36\x36\x36\x36\x36\x36\x36\x36" "\x36\x36\x36\x36\x36\x36\x36\x36" "\x36\x36\x36\x36\x36\x36\x36\x36" "\x36\x36\x36\x36\x36\x36\x36\x36" "\x36\x36\x36\x36\x36\x36\x36\x36" }; /* 0x5C repeated 48 times */ static const BYTE pad2[48] = { "\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C" "\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C" "\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C" "\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C" "\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C" "\x5C\x5C\x5C\x5C\x5C\x5C\x5C\x5C" }; static const BYTE fips_reverse_table[256] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff }; static const BYTE fips_oddparity_table[256] = { 0x01, 0x01, 0x02, 0x02, 0x04, 0x04, 0x07, 0x07, 0x08, 0x08, 0x0b, 0x0b, 0x0d, 0x0d, 0x0e, 0x0e, 0x10, 0x10, 0x13, 0x13, 0x15, 0x15, 0x16, 0x16, 0x19, 0x19, 0x1a, 0x1a, 0x1c, 0x1c, 0x1f, 0x1f, 0x20, 0x20, 0x23, 0x23, 0x25, 0x25, 0x26, 0x26, 0x29, 0x29, 0x2a, 0x2a, 0x2c, 0x2c, 0x2f, 0x2f, 0x31, 0x31, 0x32, 0x32, 0x34, 0x34, 0x37, 0x37, 0x38, 0x38, 0x3b, 0x3b, 0x3d, 0x3d, 0x3e, 0x3e, 0x40, 0x40, 0x43, 0x43, 0x45, 0x45, 0x46, 0x46, 0x49, 0x49, 0x4a, 0x4a, 0x4c, 0x4c, 0x4f, 0x4f, 0x51, 0x51, 0x52, 0x52, 0x54, 0x54, 0x57, 0x57, 0x58, 0x58, 0x5b, 0x5b, 0x5d, 0x5d, 0x5e, 0x5e, 0x61, 0x61, 0x62, 0x62, 0x64, 0x64, 0x67, 0x67, 0x68, 0x68, 0x6b, 0x6b, 0x6d, 0x6d, 0x6e, 0x6e, 0x70, 0x70, 0x73, 0x73, 0x75, 0x75, 0x76, 0x76, 0x79, 0x79, 0x7a, 0x7a, 0x7c, 0x7c, 0x7f, 0x7f, 0x80, 0x80, 0x83, 0x83, 0x85, 0x85, 0x86, 0x86, 0x89, 0x89, 0x8a, 0x8a, 0x8c, 0x8c, 0x8f, 0x8f, 0x91, 0x91, 0x92, 0x92, 0x94, 0x94, 0x97, 0x97, 0x98, 0x98, 0x9b, 0x9b, 0x9d, 0x9d, 0x9e, 0x9e, 0xa1, 0xa1, 0xa2, 0xa2, 0xa4, 0xa4, 0xa7, 0xa7, 0xa8, 0xa8, 0xab, 0xab, 0xad, 0xad, 0xae, 0xae, 0xb0, 0xb0, 0xb3, 0xb3, 0xb5, 0xb5, 0xb6, 0xb6, 0xb9, 0xb9, 0xba, 0xba, 0xbc, 0xbc, 0xbf, 0xbf, 0xc1, 0xc1, 0xc2, 0xc2, 0xc4, 0xc4, 0xc7, 0xc7, 0xc8, 0xc8, 0xcb, 0xcb, 0xcd, 0xcd, 0xce, 0xce, 0xd0, 0xd0, 0xd3, 0xd3, 0xd5, 0xd5, 0xd6, 0xd6, 0xd9, 0xd9, 0xda, 0xda, 0xdc, 0xdc, 0xdf, 0xdf, 0xe0, 0xe0, 0xe3, 0xe3, 0xe5, 0xe5, 0xe6, 0xe6, 0xe9, 0xe9, 0xea, 0xea, 0xec, 0xec, 0xef, 0xef, 0xf1, 0xf1, 0xf2, 0xf2, 0xf4, 0xf4, 0xf7, 0xf7, 0xf8, 0xf8, 0xfb, 0xfb, 0xfd, 0xfd, 0xfe, 0xfe }; static void security_salted_hash(const BYTE* salt, const BYTE* input, int length, const BYTE* salt1, const BYTE* salt2, BYTE* output) { CryptoMd5 md5; CryptoSha1 sha1; BYTE sha1_digest[CRYPTO_SHA1_DIGEST_LENGTH]; /* SaltedHash(Salt, Input, Salt1, Salt2) = MD5(S + SHA1(Input + Salt + Salt1 + Salt2)) */ /* SHA1_Digest = SHA1(Input + Salt + Salt1 + Salt2) */ sha1 = crypto_sha1_init(); if (!sha1) { fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__); return; } crypto_sha1_update(sha1, input, length); /* Input */ crypto_sha1_update(sha1, salt, 48); /* Salt (48 bytes) */ crypto_sha1_update(sha1, salt1, 32); /* Salt1 (32 bytes) */ crypto_sha1_update(sha1, salt2, 32); /* Salt2 (32 bytes) */ crypto_sha1_final(sha1, sha1_digest); /* SaltedHash(Salt, Input, Salt1, Salt2) = MD5(S + SHA1_Digest) */ md5 = crypto_md5_init(); if (!md5) { fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__); return; } crypto_md5_update(md5, salt, 48); /* Salt (48 bytes) */ crypto_md5_update(md5, sha1_digest, sizeof(sha1_digest)); /* SHA1_Digest */ crypto_md5_final(md5, output); } static void security_premaster_hash(const char* input, int length, const BYTE* premaster_secret, const BYTE* client_random, const BYTE* server_random, BYTE* output) { /* PremasterHash(Input) = SaltedHash(PremasterSecret, Input, ClientRandom, ServerRandom) */ security_salted_hash(premaster_secret, (BYTE*)input, length, client_random, server_random, output); } void security_master_secret(const BYTE* premaster_secret, const BYTE* client_random, const BYTE* server_random, BYTE* output) { /* MasterSecret = PremasterHash('A') + PremasterHash('BB') + PremasterHash('CCC') */ security_premaster_hash("A", 1, premaster_secret, client_random, server_random, &output[0]); security_premaster_hash("BB", 2, premaster_secret, client_random, server_random, &output[16]); security_premaster_hash("CCC", 3, premaster_secret, client_random, server_random, &output[32]); } static void security_master_hash(const char* input, int length, const BYTE* master_secret, const BYTE* client_random, const BYTE* server_random, BYTE* output) { /* MasterHash(Input) = SaltedHash(MasterSecret, Input, ServerRandom, ClientRandom) */ security_salted_hash(master_secret, (const BYTE*)input, length, server_random, client_random, output); } void security_session_key_blob(const BYTE* master_secret, const BYTE* client_random, const BYTE* server_random, BYTE* output) { /* MasterHash = MasterHash('A') + MasterHash('BB') + MasterHash('CCC') */ security_master_hash("A", 1, master_secret, client_random, server_random, &output[0]); security_master_hash("BB", 2, master_secret, client_random, server_random, &output[16]); security_master_hash("CCC", 3, master_secret, client_random, server_random, &output[32]); } void security_mac_salt_key(const BYTE* session_key_blob, const BYTE* client_random, const BYTE* server_random, BYTE* output) { /* MacSaltKey = First128Bits(SessionKeyBlob) */ memcpy(output, session_key_blob, 16); } void security_md5_16_32_32(const BYTE* in0, const BYTE* in1, const BYTE* in2, BYTE* output) { CryptoMd5 md5; md5 = crypto_md5_init(); if (!md5) { fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__); return; } crypto_md5_update(md5, in0, 16); crypto_md5_update(md5, in1, 32); crypto_md5_update(md5, in2, 32); crypto_md5_final(md5, output); } void security_licensing_encryption_key(const BYTE* session_key_blob, const BYTE* client_random, const BYTE* server_random, BYTE* output) { /* LicensingEncryptionKey = MD5(Second128Bits(SessionKeyBlob) + ClientRandom + ServerRandom)) */ security_md5_16_32_32(&session_key_blob[16], client_random, server_random, output); } void security_UINT32_le(BYTE* output, UINT32 value) { output[0] = (value) & 0xFF; output[1] = (value >> 8) & 0xFF; output[2] = (value >> 16) & 0xFF; output[3] = (value >> 24) & 0xFF; } void security_mac_data(const BYTE* mac_salt_key, const BYTE* data, UINT32 length, BYTE* output) { CryptoMd5 md5; CryptoSha1 sha1; BYTE length_le[4]; BYTE sha1_digest[CRYPTO_SHA1_DIGEST_LENGTH]; /* MacData = MD5(MacSaltKey + pad2 + SHA1(MacSaltKey + pad1 + length + data)) */ security_UINT32_le(length_le, length); /* length must be little-endian */ /* SHA1_Digest = SHA1(MacSaltKey + pad1 + length + data) */ sha1 = crypto_sha1_init(); if (!sha1) { fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__); return; } crypto_sha1_update(sha1, mac_salt_key, 16); /* MacSaltKey */ crypto_sha1_update(sha1, pad1, sizeof(pad1)); /* pad1 */ crypto_sha1_update(sha1, length_le, sizeof(length_le)); /* length */ crypto_sha1_update(sha1, data, length); /* data */ crypto_sha1_final(sha1, sha1_digest); /* MacData = MD5(MacSaltKey + pad2 + SHA1_Digest) */ md5 = crypto_md5_init(); if (!md5) { fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__); return; } crypto_md5_update(md5, mac_salt_key, 16); /* MacSaltKey */ crypto_md5_update(md5, pad2, sizeof(pad2)); /* pad2 */ crypto_md5_update(md5, sha1_digest, sizeof(sha1_digest)); /* SHA1_Digest */ crypto_md5_final(md5, output); } void security_mac_signature(rdpRdp *rdp, const BYTE* data, UINT32 length, BYTE* output) { CryptoMd5 md5; CryptoSha1 sha1; BYTE length_le[4]; BYTE md5_digest[CRYPTO_MD5_DIGEST_LENGTH]; BYTE sha1_digest[CRYPTO_SHA1_DIGEST_LENGTH]; security_UINT32_le(length_le, length); /* length must be little-endian */ /* SHA1_Digest = SHA1(MACKeyN + pad1 + length + data) */ sha1 = crypto_sha1_init(); if (!sha1) { fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__); return; } crypto_sha1_update(sha1, rdp->sign_key, rdp->rc4_key_len); /* MacKeyN */ crypto_sha1_update(sha1, pad1, sizeof(pad1)); /* pad1 */ crypto_sha1_update(sha1, length_le, sizeof(length_le)); /* length */ crypto_sha1_update(sha1, data, length); /* data */ crypto_sha1_final(sha1, sha1_digest); /* MACSignature = First64Bits(MD5(MACKeyN + pad2 + SHA1_Digest)) */ md5 = crypto_md5_init(); if (!md5) { fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__); return; } crypto_md5_update(md5, rdp->sign_key, rdp->rc4_key_len); /* MacKeyN */ crypto_md5_update(md5, pad2, sizeof(pad2)); /* pad2 */ crypto_md5_update(md5, sha1_digest, sizeof(sha1_digest)); /* SHA1_Digest */ crypto_md5_final(md5, md5_digest); memcpy(output, md5_digest, 8); } void security_salted_mac_signature(rdpRdp *rdp, const BYTE* data, UINT32 length, BOOL encryption, BYTE* output) { CryptoMd5 md5; CryptoSha1 sha1; BYTE length_le[4]; BYTE use_count_le[4]; BYTE md5_digest[CRYPTO_MD5_DIGEST_LENGTH]; BYTE sha1_digest[CRYPTO_SHA1_DIGEST_LENGTH]; security_UINT32_le(length_le, length); /* length must be little-endian */ if (encryption) { security_UINT32_le(use_count_le, rdp->encrypt_checksum_use_count); } else { /* * We calculate checksum on plain text, so we must have already * decrypt it, which means decrypt_checksum_use_count is off by one. */ security_UINT32_le(use_count_le, rdp->decrypt_checksum_use_count - 1); } /* SHA1_Digest = SHA1(MACKeyN + pad1 + length + data) */ sha1 = crypto_sha1_init(); if (!sha1) { fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__); return; } crypto_sha1_update(sha1, rdp->sign_key, rdp->rc4_key_len); /* MacKeyN */ crypto_sha1_update(sha1, pad1, sizeof(pad1)); /* pad1 */ crypto_sha1_update(sha1, length_le, sizeof(length_le)); /* length */ crypto_sha1_update(sha1, data, length); /* data */ crypto_sha1_update(sha1, use_count_le, sizeof(use_count_le)); /* encryptionCount */ crypto_sha1_final(sha1, sha1_digest); /* MACSignature = First64Bits(MD5(MACKeyN + pad2 + SHA1_Digest)) */ md5 = crypto_md5_init(); if (!md5) { fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__); return; } crypto_md5_update(md5, rdp->sign_key, rdp->rc4_key_len); /* MacKeyN */ crypto_md5_update(md5, pad2, sizeof(pad2)); /* pad2 */ crypto_md5_update(md5, sha1_digest, sizeof(sha1_digest)); /* SHA1_Digest */ crypto_md5_final(md5, md5_digest); memcpy(output, md5_digest, 8); } static void security_A(BYTE* master_secret, const BYTE* client_random, BYTE* server_random, BYTE* output) { security_premaster_hash("A", 1, master_secret, client_random, server_random, &output[0]); security_premaster_hash("BB", 2, master_secret, client_random, server_random, &output[16]); security_premaster_hash("CCC", 3, master_secret, client_random, server_random, &output[32]); } static void security_X(BYTE* master_secret, const BYTE* client_random, BYTE* server_random, BYTE* output) { security_premaster_hash("X", 1, master_secret, client_random, server_random, &output[0]); security_premaster_hash("YY", 2, master_secret, client_random, server_random, &output[16]); security_premaster_hash("ZZZ", 3, master_secret, client_random, server_random, &output[32]); } static void fips_expand_key_bits(BYTE* in, BYTE* out) { BYTE buf[21], c; int i, b, p, r; /* reverse every byte in the key */ for (i = 0; i < 21; i++) buf[i] = fips_reverse_table[in[i]]; /* insert a zero-bit after every 7th bit */ for (i = 0, b = 0; i < 24; i++, b += 7) { p = b / 8; r = b % 8; if (r == 0) { out[i] = buf[p] & 0xfe; } else { /* c is accumulator */ c = buf[p] << r; c |= buf[p + 1] >> (8 - r); out[i] = c & 0xfe; } } /* reverse every byte */ /* alter lsb so the byte has odd parity */ for (i = 0; i < 24; i++) out[i] = fips_oddparity_table[fips_reverse_table[out[i]]]; } BOOL security_establish_keys(const BYTE* client_random, rdpRdp* rdp) { BYTE pre_master_secret[48]; BYTE master_secret[48]; BYTE session_key_blob[48]; BYTE* server_random; BYTE salt40[] = { 0xD1, 0x26, 0x9E }; rdpSettings* settings; settings = rdp->settings; server_random = settings->ServerRandom; if (settings->EncryptionMethods == ENCRYPTION_METHOD_FIPS) { CryptoSha1 sha1; BYTE client_encrypt_key_t[CRYPTO_SHA1_DIGEST_LENGTH + 1]; BYTE client_decrypt_key_t[CRYPTO_SHA1_DIGEST_LENGTH + 1]; fprintf(stderr, "FIPS Compliant encryption level.\n"); /* disable fastpath input; it doesnt handle FIPS encryption yet */ rdp->settings->FastPathInput = FALSE; sha1 = crypto_sha1_init(); if (!sha1) { fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__); return FALSE; } crypto_sha1_update(sha1, client_random + 16, 16); crypto_sha1_update(sha1, server_random + 16, 16); crypto_sha1_final(sha1, client_encrypt_key_t); client_encrypt_key_t[20] = client_encrypt_key_t[0]; fips_expand_key_bits(client_encrypt_key_t, rdp->fips_encrypt_key); sha1 = crypto_sha1_init(); if (!sha1) { fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__); return FALSE; } crypto_sha1_update(sha1, client_random, 16); crypto_sha1_update(sha1, server_random, 16); crypto_sha1_final(sha1, client_decrypt_key_t); client_decrypt_key_t[20] = client_decrypt_key_t[0]; fips_expand_key_bits(client_decrypt_key_t, rdp->fips_decrypt_key); sha1 = crypto_sha1_init(); if (!sha1) { fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__); return FALSE; } crypto_sha1_update(sha1, client_decrypt_key_t, 20); crypto_sha1_update(sha1, client_encrypt_key_t, 20); crypto_sha1_final(sha1, rdp->fips_sign_key); } memcpy(pre_master_secret, client_random, 24); memcpy(pre_master_secret + 24, server_random, 24); security_A(pre_master_secret, client_random, server_random, master_secret); security_X(master_secret, client_random, server_random, session_key_blob); memcpy(rdp->sign_key, session_key_blob, 16); if (rdp->settings->ServerMode) { security_md5_16_32_32(&session_key_blob[16], client_random, server_random, rdp->encrypt_key); security_md5_16_32_32(&session_key_blob[32], client_random, server_random, rdp->decrypt_key); } else { security_md5_16_32_32(&session_key_blob[16], client_random, server_random, rdp->decrypt_key); security_md5_16_32_32(&session_key_blob[32], client_random, server_random, rdp->encrypt_key); } if (settings->EncryptionMethods == 1) /* 40 and 56 bit */ { memcpy(rdp->sign_key, salt40, 3); /* TODO 56 bit */ memcpy(rdp->decrypt_key, salt40, 3); /* TODO 56 bit */ memcpy(rdp->encrypt_key, salt40, 3); /* TODO 56 bit */ rdp->rc4_key_len = 8; } else if (settings->EncryptionMethods == 2) /* 128 bit */ { rdp->rc4_key_len = 16; } memcpy(rdp->decrypt_update_key, rdp->decrypt_key, 16); memcpy(rdp->encrypt_update_key, rdp->encrypt_key, 16); rdp->decrypt_use_count = 0; rdp->decrypt_checksum_use_count = 0; rdp->encrypt_use_count =0; rdp->encrypt_checksum_use_count =0; return TRUE; } BOOL security_key_update(BYTE* key, BYTE* update_key, int key_len) { BYTE sha1h[CRYPTO_SHA1_DIGEST_LENGTH]; CryptoMd5 md5; CryptoSha1 sha1; CryptoRc4 rc4; BYTE salt40[] = { 0xD1, 0x26, 0x9E }; sha1 = crypto_sha1_init(); if (!sha1) { fprintf(stderr, "%s: unable to allocate a sha1\n", __FUNCTION__); return FALSE; } crypto_sha1_update(sha1, update_key, key_len); crypto_sha1_update(sha1, pad1, sizeof(pad1)); crypto_sha1_update(sha1, key, key_len); crypto_sha1_final(sha1, sha1h); md5 = crypto_md5_init(); if (!md5) { fprintf(stderr, "%s: unable to allocate a md5\n", __FUNCTION__); return FALSE; } crypto_md5_update(md5, update_key, key_len); crypto_md5_update(md5, pad2, sizeof(pad2)); crypto_md5_update(md5, sha1h, sizeof(sha1h)); crypto_md5_final(md5, key); rc4 = crypto_rc4_init(key, key_len); if (!rc4) { fprintf(stderr, "%s: unable to allocate a rc4\n", __FUNCTION__); return FALSE; } crypto_rc4(rc4, key_len, key, key); crypto_rc4_free(rc4); if (key_len == 8) memcpy(key, salt40, 3); /* TODO 56 bit */ return TRUE; } BOOL security_encrypt(BYTE* data, int length, rdpRdp* rdp) { if (rdp->encrypt_use_count >= 4096) { security_key_update(rdp->encrypt_key, rdp->encrypt_update_key, rdp->rc4_key_len); crypto_rc4_free(rdp->rc4_encrypt_key); rdp->rc4_encrypt_key = crypto_rc4_init(rdp->encrypt_key, rdp->rc4_key_len); if (!rdp->rc4_encrypt_key) { fprintf(stderr, "%s: unable to allocate rc4 encrypt key\n", __FUNCTION__); return FALSE; } rdp->encrypt_use_count = 0; } crypto_rc4(rdp->rc4_encrypt_key, length, data, data); rdp->encrypt_use_count++; rdp->encrypt_checksum_use_count++; return TRUE; } BOOL security_decrypt(BYTE* data, int length, rdpRdp* rdp) { if (rdp->rc4_decrypt_key == NULL) return FALSE; if (rdp->decrypt_use_count >= 4096) { security_key_update(rdp->decrypt_key, rdp->decrypt_update_key, rdp->rc4_key_len); crypto_rc4_free(rdp->rc4_decrypt_key); rdp->rc4_decrypt_key = crypto_rc4_init(rdp->decrypt_key, rdp->rc4_key_len); if (!rdp->rc4_decrypt_key) { fprintf(stderr, "%s: unable to allocate rc4 decrypt key\n", __FUNCTION__); return FALSE; } rdp->decrypt_use_count = 0; } crypto_rc4(rdp->rc4_decrypt_key, length, data, data); rdp->decrypt_use_count += 1; rdp->decrypt_checksum_use_count++; return TRUE; } void security_hmac_signature(const BYTE* data, int length, BYTE* output, rdpRdp* rdp) { BYTE buf[20]; BYTE use_count_le[4]; security_UINT32_le(use_count_le, rdp->encrypt_use_count); crypto_hmac_sha1_init(rdp->fips_hmac, rdp->fips_sign_key, 20); crypto_hmac_update(rdp->fips_hmac, data, length); crypto_hmac_update(rdp->fips_hmac, use_count_le, 4); crypto_hmac_final(rdp->fips_hmac, buf, 20); memmove(output, buf, 8); } BOOL security_fips_encrypt(BYTE* data, int length, rdpRdp* rdp) { crypto_des3_encrypt(rdp->fips_encrypt, length, data, data); rdp->encrypt_use_count++; return TRUE; } BOOL security_fips_decrypt(BYTE* data, int length, rdpRdp* rdp) { crypto_des3_decrypt(rdp->fips_decrypt, length, data, data); return TRUE; } BOOL security_fips_check_signature(const BYTE* data, int length, const BYTE* sig, rdpRdp* rdp) { BYTE buf[20]; BYTE use_count_le[4]; security_UINT32_le(use_count_le, rdp->decrypt_use_count); crypto_hmac_sha1_init(rdp->fips_hmac, rdp->fips_sign_key, 20); crypto_hmac_update(rdp->fips_hmac, data, length); crypto_hmac_update(rdp->fips_hmac, use_count_le, 4); crypto_hmac_final(rdp->fips_hmac, buf, 20); rdp->decrypt_use_count++; if (memcmp(sig, buf, 8)) return FALSE; return TRUE; }