- winpr_HMAC_New() now just returnes the opaque WINPR_HMAC_CTX* pointer
which has to be passed to winpr_HMAC_Init() for (re)initialization
and since winpr_HMAC_Final() no more frees the context you always have to
use the new function winpr_HMAC_Free() once winpr_HMAC_New() has succeded
- winpr_Digest_New() now just returns the opaque WINPR_DIGEST_CTX* pointer
which has to be passed to winpr_Digest_Init() for (re)initialization
and since winpr_Digest_Final() no more frees the context you always have to
use the new function winpr_Digest_Free() once winpr_Digest_New() has succeded
According to [MS-RDPBCGR 2.2.1.11.1.1.1] the TS_EXTENDED_INFO_PACKET
structure's cbClientAddress field must include the _mandatory_ NULL
terminator of the clientAddress field in its byte count.
However, connections proxied via Microsoft's TS Gateway set the
cbClientDir value to 0.
According to [MS-RDPBCGR 2.2.1.11.1.1.1] the TS_EXTENDED_INFO_PACKET
structure's cbClientDir field must include the _mandatory_ NULL
terminator of the ClientDir field.
However, since version 8.1.31.44, the Microsoft Remote Desktop Client
for Android sets cbClientDir to 0.
since there have been reports that certain windows versions send
zero values in the cbDomain field of the Logon Info Version 2
(TS_LOGON_INFO_VERSION_2) struct we allow zero values for cbUserName
and cbDomain in rdp_recv_logon_info_v1 and rdp_recv_logon_info_v2.
- Added missing ConvertFromUnicode checks
- If ConvertToUnicode allocates memory, guarantee the null termination
similar to ConvertFromUnicode's implementation
- Fixed some TestUnicodeConversion.c CTest return values
- Added some CTests for ConvertFromUnicode and ConvertToUnicode
- Misc code and protocol hardening fixes in the surrounding code regions
that have been touched
This patch adds some callbacks so that the client can have access to the informations
stored in this packet. Server-side implementation is also there, so that a server
can send these informations to the client.
[MS-RDPBCGR] Section 5.3 describes the encryption level and method values for
standard RDP security.
Looking at the current usage of these values in the FreeRDP code gives me
reason to believe that there is a certain lack of understanding of how these
values should be handled.
The encryption level is only configured on the server side in the "Encryption
Level" setting found in the Remote Desktop Session Host Configuration RDP-Tcp
properties dialog and this value is never transferred from the client to the
server over the wire.
The possible options are "None", "Low", "Client Compatible", "High" and
"FIPS Compliant". The client receices this value in the Server Security Data
block (TS_UD_SC_SEC1), probably only for informational purposes and maybe to
give the client the possibility to verify if the server's decision for the
encryption method confirms to the server's encryption level.
The possible encryption methods are "NONE", "40BIT", "56BIT", "128BIT" and
"FIPS" and the RDP client advertises the ones it supports to the server in the
Client Security Data block (TS_UD_CS_SEC).
The server's configured encryption level value restricts the possible final
encryption method.
Something that I was not able to find in the documentation is the priority
level of the individual encryption methods based on which the server makes its
final method decision if there are several options.
My analysis with Windows Servers reveiled that the order is 128, 56, 40, FIPS.
The server only chooses FIPS if the level is "FIPS Comliant" or if it is the
only method advertised by the client.
Bottom line:
* FreeRDP's client side does not need to set settings->EncryptionLevel
(which was done quite frequently).
* FreeRDP's server side does not have to set the supported encryption methods
list in settings->EncryptionMethods
Changes in this commit:
Removed unnecessary/confusing changes of EncryptionLevel/Methods settings
Refactor settings->DisableEncryption
* This value actually means "Advanced RDP Encryption (NLA/TLS) is NOT used"
* The old name caused lots of confusion among developers
* Renamed it to "UseRdpSecurityLayer" (the compare logic stays untouched)
Any client's setting of settings->EncryptionMethods were annihilated
* All clients "want" to set all supported methods
* Some clients forgot 56bit because 56bit was not supported at the time the
code was written
* settings->EncryptionMethods was overwritten anyways in nego_connect()
* Removed all client side settings of settings->EncryptionMethods
The default is "None" (0)
* Changed nego_connect() to advertise all supported methods if
settings->EncryptionMethods is 0 (None)
* Added a commandline option /encryption-methods:comma separated list of the
values "40", "56", "128", "FIPS". E.g. /encryption-methods:56,128
* Print warning if server chooses non-advertised method
Verify received level and method in client's gcc_read_server_security_data
* Only accept valid/known encryption methods
* Verify encryption level/method combinations according to MS-RDPBCGR 5.3.2
Server implementations can now set settings->EncryptionLevel
* The default for settings->EncryptionLevel is 0 (None)
* nego_send_negotiation_response() changes it to ClientCompatible in that case
* default to ClientCompatible if the server implementation set an invalid level
Fix server's gcc_write_server_security_data
* Verify server encryption level value set by server implementations
* Choose rdp encryption method based on level and supported client methods
* Moved FIPS to the lowest priority (only used if other methods are possible)
Updated sample server
* Support RDP Security (RdpKeyFile was not set)
* Added commented sample code for setting the security level
Malloc can fail so it will, this patch adds some check in some places
where malloc/strdup results were not checked.
This patch also contains a server side fix for RDP security (credit to nfedera).
The signature len was badly set in the GCC packet. And some other RDP security
oriented fixes are also there.