FreeRDP/libfreerdp/primitives/prim_YUV.c

630 lines
15 KiB
C
Raw Normal View History

/**
* FreeRDP: A Remote Desktop Protocol Implementation
*
* Copyright 2014 Marc-Andre Moreau <marcandre.moreau@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <freerdp/types.h>
#include <freerdp/primitives.h>
#include <freerdp/codec/color.h>
2016-03-02 17:16:49 +03:00
static INLINE BYTE CLIP(INT32 X)
{
if (X > 255L)
return 255L;
2016-03-02 17:16:49 +03:00
if (X < 0L)
return 0L;
2016-03-02 17:16:49 +03:00
return X;
}
2016-03-02 16:53:55 +03:00
/**
* @brief general_YUV420CombineToYUV444
2016-03-02 17:16:49 +03:00
*
2016-03-14 11:01:57 +03:00
* @param pMainSrc Pointer to luma YUV420 data
* @param srcMainStep Step width in luma YUV420 data
* @param pAuxSrc Pointer to chroma YUV420 data
* @param srcAuxStep Step width in chroma YUV420 data
* @param pDst Pointer to YUV444 data
* @param dstStep Step width in YUV444 data
* @param roi Region of source to combine in destination.
2016-03-02 16:53:55 +03:00
*
* @return PRIMITIVES_SUCCESS on success, an error code otherwise.
*/
static pstatus_t general_YUV420CombineToYUV444(
const BYTE* pMainSrc[3], const UINT32 srcMainStep[3],
const BYTE* pAuxSrc[3], const UINT32 srcAuxStep[3],
BYTE* pDst[3], const UINT32 dstStep[3],
const prim_size_t* roi)
2016-03-02 16:53:55 +03:00
{
2016-03-02 17:16:49 +03:00
const UINT32 mod = 16;
UINT32 uY = 0;
UINT32 vY = 0;
2016-03-02 16:53:55 +03:00
UINT32 x, y;
UINT32 nWidth, nHeight;
UINT32 halfWidth, halfHeight;
2016-03-02 17:16:49 +03:00
const UINT32 oddY = 1;
const UINT32 evenY = 0;
const UINT32 oddX = 1;
const UINT32 evenX = 0;
/* The auxilary frame is aligned to multiples of 16x16.
* We need the padded height for B4 and B5 conversion. */
const UINT32 padHeigth = roi->height + 16 - roi->height % 16;
2016-03-02 16:53:55 +03:00
nWidth = roi->width;
nHeight = roi->height;
halfWidth = (nWidth) / 2;
2016-03-02 17:16:49 +03:00
halfHeight = (nHeight) / 2;
2016-03-02 16:53:55 +03:00
if (pMainSrc)
{
/* Y data is already here... */
/* B1 */
for (y = 0; y < nHeight; y++)
2016-03-02 16:53:55 +03:00
{
const BYTE* Ym = pMainSrc[0] + srcMainStep[0] * y;
BYTE* pY = pDst[0] + dstStep[0] * y;
memcpy(pY, Ym, nWidth);
}
/* The first half of U, V are already here part of this frame. */
/* B2 and B3 */
for (y = 0; y < halfHeight; y++)
2016-03-02 16:53:55 +03:00
{
2016-03-02 17:16:49 +03:00
const UINT32 val2y = (2 * y + evenY);
const UINT32 val2y1 = val2y + oddY;
2016-03-02 16:53:55 +03:00
const BYTE* Um = pMainSrc[1] + srcMainStep[1] * y;
const BYTE* Vm = pMainSrc[2] + srcMainStep[2] * y;
2016-03-02 17:16:49 +03:00
BYTE* pU = pDst[1] + dstStep[1] * val2y;
BYTE* pV = pDst[2] + dstStep[2] * val2y;
BYTE* pU1 = pDst[1] + dstStep[1] * val2y1;
BYTE* pV1 = pDst[2] + dstStep[2] * val2y1;
2016-03-02 16:53:55 +03:00
for (x = 0; x < halfWidth; x++)
2016-03-02 16:53:55 +03:00
{
const UINT32 val2x = 2 * x + evenX;
const UINT32 val2x1 = val2x + oddX;
2016-03-02 17:16:49 +03:00
pU[val2x] = Um[x];
pV[val2x] = Vm[x];
pU[val2x1] = Um[x];
pV[val2x1] = Vm[x];
pU1[val2x] = Um[x];
pV1[val2x] = Vm[x];
pU1[val2x1] = Um[x];
pV1[val2x1] = Vm[x];
2016-03-02 16:53:55 +03:00
}
}
2016-03-02 17:16:49 +03:00
}
if (!pAuxSrc)
return PRIMITIVES_SUCCESS;
2016-03-02 16:53:55 +03:00
/* The second half of U and V is a bit more tricky... */
2016-03-02 17:16:49 +03:00
/* B4 and B5 */
for (y = 0; y < padHeigth; y++)
2016-03-02 16:53:55 +03:00
{
const BYTE* Ya = pAuxSrc[0] + srcAuxStep[0] * y;
2016-03-02 17:16:49 +03:00
BYTE* pX;
2016-03-02 16:53:55 +03:00
if ((y) % mod < (mod + 1) / 2)
2016-03-02 17:16:49 +03:00
{
const UINT32 pos = (2 * uY++ + oddY);
2016-03-02 17:16:49 +03:00
if (pos >= nHeight)
continue;
2016-03-02 17:16:49 +03:00
pX = pDst[1] + dstStep[1] * pos;
}
else
{
const UINT32 pos = (2 * vY++ + oddY);
2016-03-02 17:16:49 +03:00
if (pos >= nHeight)
continue;
2016-03-02 17:16:49 +03:00
pX = pDst[2] + dstStep[2] * pos;
}
memcpy(pX, Ya, nWidth);
2016-03-02 16:53:55 +03:00
}
2016-03-02 17:16:49 +03:00
/* B6 and B7 */
for (y = 0; y < halfHeight; y++)
2016-03-02 16:53:55 +03:00
{
2016-03-02 17:16:49 +03:00
const UINT32 val2y = (y * 2 + evenY);
const BYTE* Ua = pAuxSrc[1] + srcAuxStep[1] * y;
const BYTE* Va = pAuxSrc[2] + srcAuxStep[2] * y;
BYTE* pU = pDst[1] + dstStep[1] * val2y;
BYTE* pV = pDst[2] + dstStep[2] * val2y;
2016-03-02 16:53:55 +03:00
for (x = 0; x < halfWidth; x++)
2016-03-02 17:16:49 +03:00
{
const UINT32 val2x1 = (x * 2 + oddX);
pU[val2x1] = Ua[x];
pV[val2x1] = Va[x];
}
}
/* Filter */
for (y = 0; y < halfHeight; y++)
2016-03-02 17:16:49 +03:00
{
const UINT32 val2y = (y * 2 + evenY);
const UINT32 val2y1 = val2y + oddY;
BYTE* pU1 = pDst[1] + dstStep[1] * val2y1;
BYTE* pV1 = pDst[2] + dstStep[2] * val2y1;
BYTE* pU = pDst[1] + dstStep[1] * val2y;
BYTE* pV = pDst[2] + dstStep[2] * val2y;
if (val2y1 > nHeight)
continue;
for (x = 0; x < halfWidth; x++)
2016-03-02 17:16:49 +03:00
{
const UINT32 val2x = (x * 2);
const UINT32 val2x1 = val2x + 1;
const INT32 up = pU[val2x] * 4;
const INT32 vp = pV[val2x] * 4;
INT32 u2020;
INT32 v2020;
if (val2x1 > nWidth)
continue;
u2020 = up - pU[val2x1] - pU1[val2x] - pU1[val2x1];
v2020 = vp - pV[val2x1] - pV1[val2x] - pV1[val2x1];
pU[val2x] = CLIP(u2020);
pV[val2x] = CLIP(v2020);
}
}
return PRIMITIVES_SUCCESS;
}
static pstatus_t general_YUV444SplitToYUV420(
const BYTE* pSrc[3], const UINT32 srcStep[3],
BYTE* pMainDst[3], const UINT32 dstMainStep[3],
BYTE* pAuxDst[3], const UINT32 dstAuxStep[3],
const prim_size_t* roi)
2016-03-02 17:16:49 +03:00
{
UINT32 x, y, uY = 0, vY = 0;
UINT32 halfWidth, halfHeight;
/* The auxilary frame is aligned to multiples of 16x16.
* We need the padded height for B4 and B5 conversion. */
const UINT32 padHeigth = roi->height + 16 - roi->height % 16;
halfWidth = (roi->width + 1) / 2;
halfHeight = (roi->height + 1) / 2;
/* B1 */
for (y = 0; y < roi->height; y++)
2016-03-02 17:16:49 +03:00
{
const BYTE* pSrcY = pSrc[0] + y * srcStep[0];
BYTE* pY = pMainDst[0] + y * dstMainStep[0];
memcpy(pY, pSrcY, roi->width);
}
/* B2 and B3 */
for (y = 0; y < halfHeight; y++)
2016-03-02 17:16:49 +03:00
{
const BYTE* pSrcU = pSrc[1] + 2 * y * srcStep[1];
const BYTE* pSrcV = pSrc[2] + 2 * y * srcStep[2];
const BYTE* pSrcU1 = pSrc[1] + (2 * y + 1) * srcStep[1];
const BYTE* pSrcV1 = pSrc[2] + (2 * y + 1) * srcStep[2];
BYTE* pU = pMainDst[1] + y * dstMainStep[1];
BYTE* pV = pMainDst[2] + y * dstMainStep[2];
for (x = 0; x < halfWidth; x++)
2016-03-02 17:16:49 +03:00
{
/* Filter */
const INT32 u = pSrcU[2 * x] + pSrcU[2 * x + 1] + pSrcU1[2 * x]
+ pSrcU1[2 * x + 1];
const INT32 v = pSrcV[2 * x] + pSrcV[2 * x + 1] + pSrcV1[2 * x]
+ pSrcV1[2 * x + 1];
2016-03-02 17:16:49 +03:00
pU[x] = CLIP(u / 4L);
pV[x] = CLIP(v / 4L);
}
}
/* B4 and B5 */
for (y = 0; y < padHeigth; y++)
2016-03-02 17:16:49 +03:00
{
BYTE* pY = pAuxDst[0] + y * dstAuxStep[0];
if (y % 16 < 8)
{
const UINT32 pos = (2 * uY++ + 1);
const BYTE* pSrcU = pSrc[1] + pos * srcStep[1];
2016-03-02 17:16:49 +03:00
if (pos >= roi->height)
continue;
2016-03-02 17:16:49 +03:00
memcpy(pY, pSrcU, roi->width);
}
else
{
const UINT32 pos = (2 * vY++ + 1);
const BYTE* pSrcV = pSrc[2] + pos * srcStep[2];
2016-03-02 17:16:49 +03:00
if (pos >= roi->height)
continue;
2016-03-02 17:16:49 +03:00
memcpy(pY, pSrcV, roi->width);
}
2016-03-02 16:53:55 +03:00
}
/* B6 and B7 */
for (y = 0; y < halfHeight; y++)
2016-03-02 16:53:55 +03:00
{
2016-03-02 17:16:49 +03:00
const BYTE* pSrcU = pSrc[1] + 2 * y * srcStep[1];
const BYTE* pSrcV = pSrc[2] + 2 * y * srcStep[2];
BYTE* pU = pAuxDst[1] + y * dstAuxStep[1];
BYTE* pV = pAuxDst[2] + y * dstAuxStep[2];
2016-03-02 16:53:55 +03:00
for (x = 0; x < halfWidth; x++)
2016-03-02 16:53:55 +03:00
{
pU[x] = pSrcU[2 * x + 1];
pV[x] = pSrcV[2 * x + 1];
2016-03-02 16:53:55 +03:00
}
}
return PRIMITIVES_SUCCESS;
}
/**
* | R | ( | 256 0 403 | | Y | )
* | G | = ( | 256 -48 -120 | | U - 128 | ) >> 8
* | B | ( | 256 475 0 | | V - 128 | )
*/
2016-03-02 17:16:49 +03:00
static INLINE INT32 C(INT32 Y)
{
return (Y) - 0L;
}
static INLINE INT32 D(INT32 U)
{
return (U) - 128L;
}
static INLINE INT32 E(INT32 V)
{
return (V) - 128L;
}
static INLINE BYTE YUV2R(INT32 Y, INT32 U, INT32 V)
{
const INT32 r = (256L * C(Y) + 0L * D(U) + 403L * E(V));
2016-03-02 17:16:49 +03:00
const INT32 r8 = r >> 8L;
return CLIP(r8);
}
2016-03-02 16:53:55 +03:00
2016-03-02 17:16:49 +03:00
static INLINE BYTE YUV2G(INT32 Y, INT32 U, INT32 V)
{
const INT32 g = (256L * C(Y) - 48L * D(U) - 120L * E(V));
2016-03-02 17:16:49 +03:00
const INT32 g8 = g >> 8L;
return CLIP(g8);
}
static INLINE BYTE YUV2B(INT32 Y, INT32 U, INT32 V)
{
const INT32 b = (256L * C(Y) + 475L * D(U) + 0L * E(V));
2016-03-02 17:16:49 +03:00
const INT32 b8 = b >> 8L;
return CLIP(b8);
}
2016-03-02 16:53:55 +03:00
static INLINE BYTE* writeYUVPixel(BYTE* dst, DWORD formatSize, UINT32 format, BYTE Y, BYTE U,
BYTE V)
{
const BYTE r = YUV2R(Y, U, V);
const BYTE g = YUV2G(Y, U, V);
const BYTE b = YUV2B(Y, U, V);
2016-07-13 15:04:48 +03:00
UINT32 color = GetColor(format, r, g, b, 0xFF);
WriteColor(dst, format, color);
return dst + formatSize;
}
2016-03-02 16:53:55 +03:00
static pstatus_t general_YUV444ToRGB_8u_P3AC4R(
const BYTE* pSrc[3], const UINT32 srcStep[3],
BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
const prim_size_t* roi)
2016-03-02 16:53:55 +03:00
{
UINT32 x, y;
UINT32 nWidth, nHeight;
const DWORD formatSize = GetBytesPerPixel(DstFormat);
2016-03-02 16:53:55 +03:00
nWidth = roi->width;
nHeight = roi->height;
for (y = 0; y < nHeight; y++)
{
const BYTE* pY = pSrc[0] + y * srcStep[0];
const BYTE* pU = pSrc[1] + y * srcStep[1];
const BYTE* pV = pSrc[2] + y * srcStep[2];
BYTE* pRGB = pDst + y * dstStep;
for (x = 0; x < nWidth; x++)
{
const BYTE Y = pY[x];
2016-03-02 17:16:49 +03:00
const INT32 U = pU[x];
const INT32 V = pV[x];
pRGB = writeYUVPixel(pRGB, formatSize, DstFormat, Y, U, V);
2016-03-02 16:53:55 +03:00
}
}
return PRIMITIVES_SUCCESS;
}
/**
* | R | ( | 256 0 403 | | Y | )
* | G | = ( | 256 -48 -120 | | U - 128 | ) >> 8
* | B | ( | 256 475 0 | | V - 128 | )
*/
2016-03-02 16:53:55 +03:00
static pstatus_t general_YUV420ToRGB_8u_P3AC4R(
const BYTE* pSrc[3], const UINT32 srcStep[3],
BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
const prim_size_t* roi)
{
2016-03-02 16:53:55 +03:00
UINT32 x, y;
UINT32 dstPad;
UINT32 srcPad[3];
BYTE Y, U, V;
2016-03-02 16:53:55 +03:00
UINT32 halfWidth;
UINT32 halfHeight;
const BYTE* pY;
const BYTE* pU;
const BYTE* pV;
BYTE* pRGB = pDst;
2016-03-02 16:53:55 +03:00
UINT32 nWidth, nHeight;
UINT32 lastRow, lastCol;
const DWORD formatSize = GetBytesPerPixel(DstFormat);
pY = pSrc[0];
pU = pSrc[1];
pV = pSrc[2];
lastCol = roi->width & 0x01;
lastRow = roi->height & 0x01;
nWidth = (roi->width + 1) & ~0x0001;
nHeight = (roi->height + 1) & ~0x0001;
halfWidth = nWidth / 2;
halfHeight = nHeight / 2;
srcPad[0] = (srcStep[0] - nWidth);
srcPad[1] = (srcStep[1] - halfWidth);
srcPad[2] = (srcStep[2] - halfWidth);
dstPad = (dstStep - (nWidth * 4));
for (y = 0; y < halfHeight;)
{
if (++y == halfHeight)
lastRow <<= 1;
for (x = 0; x < halfWidth;)
{
if (++x == halfWidth)
lastCol <<= 1;
U = *pU++;
V = *pV++;
/* 1st pixel */
Y = *pY++;
pRGB = writeYUVPixel(pRGB, formatSize, DstFormat, Y, U, V);
/* 2nd pixel */
if (!(lastCol & 0x02))
{
Y = *pY++;
pRGB = writeYUVPixel(pRGB, formatSize, DstFormat, Y, U, V);
}
else
{
pY++;
pRGB += formatSize;
lastCol >>= 1;
}
}
pY += srcPad[0];
pU -= halfWidth;
pV -= halfWidth;
pRGB += dstPad;
2016-03-02 17:16:49 +03:00
if (lastRow & 0x02)
break;
for (x = 0; x < halfWidth;)
{
if (++x == halfWidth)
lastCol <<= 1;
U = *pU++;
V = *pV++;
/* 3rd pixel */
Y = *pY++;
pRGB = writeYUVPixel(pRGB, formatSize, DstFormat, Y, U, V);
/* 4th pixel */
if (!(lastCol & 0x02))
{
Y = *pY++;
pRGB = writeYUVPixel(pRGB, formatSize, DstFormat, Y, U, V);
}
else
{
pY++;
pRGB += formatSize;
lastCol >>= 1;
}
}
pY += srcPad[0];
pU += srcPad[1];
pV += srcPad[2];
pRGB += dstPad;
}
return PRIMITIVES_SUCCESS;
}
2016-03-02 16:53:55 +03:00
/**
* | Y | ( | 54 183 18 | | R | ) | 0 |
* | U | = ( | -29 -99 128 | | G | ) >> 8 + | 128 |
* | V | ( | 128 -116 -12 | | B | ) | 128 |
*/
2016-03-02 17:16:49 +03:00
static INLINE BYTE RGB2Y(INT32 R, INT32 G, INT32 B)
{
const INT32 y = (54L * (R) + 183L * (G) + 18L * (B));
2016-03-02 17:16:49 +03:00
const INT32 y8 = (y >> 8L);
return CLIP(y8);
}
static INLINE BYTE RGB2U(INT32 R, INT32 G, INT32 B)
{
const INT32 u = (-29L * (R) - 99L * (G) + 128L * (B));
2016-03-02 17:16:49 +03:00
const INT32 u8 = (u >> 8L) + 128L;
return CLIP(u8);
}
static INLINE BYTE RGB2V(INT32 R, INT32 G, INT32 B)
{
const INT32 v = (128L * (R) - 116L * (G) - 12L * (B));
2016-03-02 17:16:49 +03:00
const INT32 v8 = (v >> 8L) + 128L;
return CLIP(v8);
}
2016-03-02 16:53:55 +03:00
static pstatus_t general_RGBToYUV444_8u_P3AC4R(
2016-07-13 15:04:48 +03:00
const BYTE* pSrc, UINT32 SrcFormat, const UINT32 srcStep,
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
2015-02-16 12:51:20 +03:00
{
2016-07-13 15:04:48 +03:00
const UINT32 bpp = GetBytesPerPixel(SrcFormat);
2016-03-02 16:53:55 +03:00
UINT32 x, y;
UINT32 nWidth, nHeight;
nWidth = roi->width;
nHeight = roi->height;
for (y = 0; y < nHeight; y++)
2016-03-02 16:53:55 +03:00
{
2016-03-02 17:16:49 +03:00
const BYTE* pRGB = pSrc + y * srcStep;
2016-03-02 16:53:55 +03:00
BYTE* pY = pDst[0] + y * dstStep[0];
BYTE* pU = pDst[1] + y * dstStep[1];
BYTE* pV = pDst[2] + y * dstStep[2];
for (x = 0; x < nWidth; x++)
2016-03-02 16:53:55 +03:00
{
2016-07-13 15:04:48 +03:00
BYTE B, G, R;
const UINT32 color = ReadColor(&pRGB[x * bpp], SrcFormat);
SplitColor(color, SrcFormat, &R, &G, &B, NULL, NULL);
2016-03-02 16:53:55 +03:00
pY[x] = RGB2Y(R, G, B);
pU[x] = RGB2U(R, G, B);
pV[x] = RGB2V(R, G, B);
}
}
return PRIMITIVES_SUCCESS;
}
static pstatus_t general_RGBToYUV420_8u_P3AC4R(
2016-07-13 15:04:48 +03:00
const BYTE* pSrc, UINT32 SrcFormat, UINT32 srcStep,
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
2016-03-02 16:53:55 +03:00
{
2016-07-13 15:04:48 +03:00
const UINT32 bpp = GetBytesPerPixel(SrcFormat);
2016-03-02 16:53:55 +03:00
UINT32 x, y;
UINT32 halfWidth;
UINT32 halfHeight;
UINT32 nWidth, nHeight;
2016-03-02 17:16:49 +03:00
nWidth = roi->width + roi->width % 2;
nHeight = roi->height + roi->height % 2;
halfWidth = (nWidth + nWidth % 2) / 2;
halfHeight = (nHeight + nHeight % 2) / 2;
2015-02-16 12:51:20 +03:00
for (y = 0; y < halfHeight; y++)
{
2016-03-02 17:16:49 +03:00
const UINT32 val2y = (y * 2);
const UINT32 val2y1 = val2y + 1;
const BYTE* pRGB = pSrc + val2y * srcStep;
const BYTE* pRGB1 = pSrc + val2y1 * srcStep;
BYTE* pY = pDst[0] + val2y * dstStep[0];
BYTE* pY1 = pDst[0] + val2y1 * dstStep[0];
BYTE* pU = pDst[1] + y * dstStep[1];
BYTE* pV = pDst[2] + y * dstStep[2];
2015-02-16 12:51:20 +03:00
for (x = 0; x < halfWidth; x++)
{
2016-07-13 15:04:48 +03:00
UINT32 color;
2016-03-02 17:16:49 +03:00
INT32 Ra, Ga, Ba;
const UINT32 val2x = (x * 2);
const UINT32 val2x1 = val2x + 1;
2016-07-13 15:04:48 +03:00
BYTE B, G, R;
2015-02-16 12:51:20 +03:00
/* 1st pixel */
2016-07-13 15:04:48 +03:00
color = ReadColor(&pRGB[val2x * bpp], SrcFormat);
SplitColor(color, SrcFormat, &R, &G, &B, NULL, NULL);
Ba = B;
Ga = G;
Ra = R;
2016-03-02 17:16:49 +03:00
pY[val2x] = RGB2Y(R, G, B);
if (val2x1 < nWidth)
2015-02-16 12:51:20 +03:00
{
/* 2nd pixel */
2016-07-13 15:04:48 +03:00
color = ReadColor(&pRGB[val2x1 * bpp], SrcFormat);
SplitColor(color, SrcFormat, &R, &G, &B, NULL, NULL);
Ba += B;
Ga += G;
Ra += R;
2016-03-02 17:16:49 +03:00
pY[val2x1] = RGB2Y(R, G, B);
2015-02-16 12:51:20 +03:00
}
2016-03-02 17:16:49 +03:00
if (val2y1 < nHeight)
2015-02-16 12:51:20 +03:00
{
/* 3rd pixel */
2016-07-13 15:04:48 +03:00
color = ReadColor(&pRGB1[val2x * bpp], SrcFormat);
SplitColor(color, SrcFormat, &R, &G, &B, NULL, NULL);
Ba += B;
Ga += G;
Ra += R;
2016-03-02 17:16:49 +03:00
pY1[val2x] = RGB2Y(R, G, B);
if (val2x1 < nWidth)
2015-02-16 12:51:20 +03:00
{
/* 4th pixel */
2016-07-13 15:04:48 +03:00
color = ReadColor(&pRGB1[val2x1 * bpp], SrcFormat);
SplitColor(color, SrcFormat, &R, &G, &B, NULL, NULL);
Ba += B;
Ga += G;
Ra += R;
2016-03-02 17:16:49 +03:00
pY1[val2x1] = RGB2Y(R, G, B);
2015-02-16 12:51:20 +03:00
}
}
Ba >>= 2;
Ga >>= 2;
Ra >>= 2;
2016-03-02 17:16:49 +03:00
pU[x] = RGB2U(Ra, Ga, Ba);
pV[x] = RGB2V(Ra, Ga, Ba);
}
2015-02-16 12:51:20 +03:00
}
return PRIMITIVES_SUCCESS;
}
void primitives_init_YUV(primitives_t* prims)
{
prims->YUV420ToRGB_8u_P3AC4R = general_YUV420ToRGB_8u_P3AC4R;
2016-03-02 17:16:49 +03:00
prims->YUV444ToRGB_8u_P3AC4R = general_YUV444ToRGB_8u_P3AC4R;
2015-02-16 12:51:20 +03:00
prims->RGBToYUV420_8u_P3AC4R = general_RGBToYUV420_8u_P3AC4R;
2016-03-02 16:53:55 +03:00
prims->RGBToYUV444_8u_P3AC4R = general_RGBToYUV444_8u_P3AC4R;
prims->YUV420CombineToYUV444 = general_YUV420CombineToYUV444;
2016-03-02 17:16:49 +03:00
prims->YUV444SplitToYUV420 = general_YUV444SplitToYUV420;
}