FreeRDP/libfreerdp-asn1/OBJECT_IDENTIFIER.c

730 lines
18 KiB
C
Raw Normal View History

2011-07-01 02:41:09 +04:00
/*-
* Copyright (c) 2003, 2004 Lev Walkin <vlm@lionet.info>. All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include "asn_internal.h"
#include "OBJECT_IDENTIFIER.h"
#include "OCTET_STRING.h"
#include <limits.h> /* for CHAR_BIT */
#include <errno.h>
/*
* OBJECT IDENTIFIER basic type description.
*/
static ber_tlv_tag_t asn_DEF_OBJECT_IDENTIFIER_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (6 << 2))
};
asn_TYPE_descriptor_t asn_DEF_OBJECT_IDENTIFIER = {
"OBJECT IDENTIFIER",
"OBJECT_IDENTIFIER",
ASN__PRIMITIVE_TYPE_free,
OBJECT_IDENTIFIER_print,
OBJECT_IDENTIFIER_constraint,
ber_decode_primitive,
der_encode_primitive,
OBJECT_IDENTIFIER_decode_xer,
OBJECT_IDENTIFIER_encode_xer,
OCTET_STRING_decode_uper,
OCTET_STRING_encode_uper,
0, /* Use generic outmost tag fetcher */
asn_DEF_OBJECT_IDENTIFIER_tags,
sizeof(asn_DEF_OBJECT_IDENTIFIER_tags)
/ sizeof(asn_DEF_OBJECT_IDENTIFIER_tags[0]),
asn_DEF_OBJECT_IDENTIFIER_tags, /* Same as above */
sizeof(asn_DEF_OBJECT_IDENTIFIER_tags)
/ sizeof(asn_DEF_OBJECT_IDENTIFIER_tags[0]),
0, /* No PER visible constraints */
0, 0, /* No members */
0 /* No specifics */
};
int
OBJECT_IDENTIFIER_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const OBJECT_IDENTIFIER_t *st = (const OBJECT_IDENTIFIER_t *)sptr;
if(st && st->buf) {
if(st->size < 1) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: at least one numerical value "
"expected (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
} else {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
return 0;
}
int
OBJECT_IDENTIFIER_get_single_arc(uint8_t *arcbuf, unsigned int arclen, signed int add, void *rvbufp, unsigned int rvsize) {
unsigned LE GCC_NOTUSED = 1; /* Little endian (x86) */
uint8_t *arcend = arcbuf + arclen; /* End of arc */
unsigned int cache = 0; /* No more than 14 significant bits */
unsigned char *rvbuf = (unsigned char *)rvbufp;
unsigned char *rvstart = rvbuf; /* Original start of the value buffer */
int inc; /* Return value growth direction */
rvsize *= CHAR_BIT; /* bytes to bits */
arclen *= 7; /* bytes to bits */
/*
* The arc has the number of bits
* cannot be represented using supplied return value type.
*/
if(arclen > rvsize) {
if(arclen > (rvsize + CHAR_BIT)) {
errno = ERANGE; /* Overflow */
return -1;
} else {
/*
* Even if the number of bits in the arc representation
* is higher than the width of supplied * return value
* type, there is still possible to fit it when there
* are few unused high bits in the arc value
* representaion.
*
* Moreover, there is a possibility that the
* number could actually fit the arc space, given
* that add is negative, but we don't handle
* such "temporary lack of precision" situation here.
* May be considered as a bug.
*/
uint8_t mask = (0xff << (7-(arclen - rvsize))) & 0x7f;
if((*arcbuf & mask)) {
errno = ERANGE; /* Overflow */
return -1;
}
/* Fool the routine computing unused bits */
arclen -= 7;
cache = *arcbuf & 0x7f;
arcbuf++;
}
}
/* Faster path for common size */
if(rvsize == (CHAR_BIT * sizeof(unsigned long))) {
unsigned long accum;
/* Gather all bits into the accumulator */
for(accum = cache; arcbuf < arcend; arcbuf++)
accum = (accum << 7) | (*arcbuf & ~0x80);
if(accum < (unsigned)-add) {
errno = ERANGE; /* Overflow */
return -1;
}
*(unsigned long *)rvbuf = accum + add; /* alignment OK! */
return 0;
}
#ifndef WORDS_BIGENDIAN
if(*(unsigned char *)&LE) { /* Little endian (x86) */
/* "Convert" to big endian */
rvbuf += rvsize / CHAR_BIT - 1;
rvstart--;
inc = -1; /* Descending */
} else
#endif /* !WORDS_BIGENDIAN */
inc = +1; /* Big endian is known [at compile time] */
{
int bits; /* typically no more than 3-4 bits */
/* Clear the high unused bits */
for(bits = rvsize - arclen;
bits > CHAR_BIT;
rvbuf += inc, bits -= CHAR_BIT)
*rvbuf = 0;
/* Fill the body of a value */
for(; arcbuf < arcend; arcbuf++) {
cache = (cache << 7) | (*arcbuf & 0x7f);
bits += 7;
if(bits >= CHAR_BIT) {
bits -= CHAR_BIT;
*rvbuf = (cache >> bits);
rvbuf += inc;
}
}
if(bits) {
*rvbuf = cache;
rvbuf += inc;
}
}
if(add) {
for(rvbuf -= inc; rvbuf != rvstart; rvbuf -= inc) {
int v = add + *rvbuf;
if(v & (-1 << CHAR_BIT)) {
*rvbuf = (unsigned char)(v + (1 << CHAR_BIT));
add = -1;
} else {
*rvbuf = v;
break;
}
}
if(rvbuf == rvstart) {
/* No space to carry over */
errno = ERANGE; /* Overflow */
return -1;
}
}
return 0;
}
ssize_t
OBJECT_IDENTIFIER__dump_arc(uint8_t *arcbuf, int arclen, int add,
asn_app_consume_bytes_f *cb, void *app_key) {
char scratch[64]; /* Conservative estimate */
unsigned long accum; /* Bits accumulator */
char *p; /* Position in the scratch buffer */
if(OBJECT_IDENTIFIER_get_single_arc(arcbuf, arclen, add,
&accum, sizeof(accum)))
return -1;
if(accum) {
ssize_t len;
/* Fill the scratch buffer in reverse. */
p = scratch + sizeof(scratch);
for(; accum; accum /= 10)
*(--p) = (char)(accum % 10) + 0x30; /* Put a digit */
len = sizeof(scratch) - (p - scratch);
if(cb(p, len, app_key) < 0)
return -1;
return len;
} else {
*scratch = 0x30;
if(cb(scratch, 1, app_key) < 0)
return -1;
return 1;
}
}
int
OBJECT_IDENTIFIER_print_arc(uint8_t *arcbuf, int arclen, int add,
asn_app_consume_bytes_f *cb, void *app_key) {
if(OBJECT_IDENTIFIER__dump_arc(arcbuf, arclen, add, cb, app_key) < 0)
return -1;
return 0;
}
static ssize_t
OBJECT_IDENTIFIER__dump_body(const OBJECT_IDENTIFIER_t *st, asn_app_consume_bytes_f *cb, void *app_key) {
ssize_t wrote_len = 0;
int startn;
int add = 0;
int i;
for(i = 0, startn = 0; i < st->size; i++) {
uint8_t b = st->buf[i];
if((b & 0x80)) /* Continuation expected */
continue;
if(startn == 0) {
/*
* First two arcs are encoded through the backdoor.
*/
if(i) {
add = -80;
if(cb("2", 1, app_key) < 0) return -1;
} else if(b <= 39) {
add = 0;
if(cb("0", 1, app_key) < 0) return -1;
} else if(b < 79) {
add = -40;
if(cb("1", 1, app_key) < 0) return -1;
} else {
add = -80;
if(cb("2", 1, app_key) < 0) return -1;
}
wrote_len += 1;
}
if(cb(".", 1, app_key) < 0) /* Separate arcs */
return -1;
add = OBJECT_IDENTIFIER__dump_arc(&st->buf[startn],
i - startn + 1, add, cb, app_key);
if(add < 0) return -1;
wrote_len += 1 + add;
startn = i + 1;
add = 0;
}
return wrote_len;
}
static enum xer_pbd_rval
OBJECT_IDENTIFIER__xer_body_decode(asn_TYPE_descriptor_t *td, void *sptr, const void *chunk_buf, size_t chunk_size) {
OBJECT_IDENTIFIER_t *st = (OBJECT_IDENTIFIER_t *)sptr;
const char *chunk_end = (const char *)chunk_buf + chunk_size;
const char *endptr;
long s_arcs[10];
long *arcs = s_arcs;
int arcs_count;
int ret;
(void)td;
arcs_count = OBJECT_IDENTIFIER_parse_arcs(
(const char *)chunk_buf, chunk_size, arcs,
sizeof(s_arcs)/sizeof(s_arcs[0]), &endptr);
if(arcs_count <= 0) {
/* Expecting more than zero arcs */
return XPBD_BROKEN_ENCODING;
}
if(endptr < chunk_end) {
/* We have a tail of unrecognized data. Check its safety. */
if(!xer_is_whitespace(endptr, chunk_end - endptr))
return XPBD_BROKEN_ENCODING;
}
if((size_t)arcs_count > sizeof(s_arcs)/sizeof(s_arcs[0])) {
arcs = (long *)MALLOC(arcs_count * sizeof(long));
if(!arcs) return XPBD_SYSTEM_FAILURE;
ret = OBJECT_IDENTIFIER_parse_arcs(
(const char *)chunk_buf, chunk_size,
arcs, arcs_count, &endptr);
if(ret != arcs_count)
return XPBD_SYSTEM_FAILURE; /* assert?.. */
}
/*
* Convert arcs into BER representation.
*/
ret = OBJECT_IDENTIFIER_set_arcs(st, arcs, sizeof(*arcs), arcs_count);
if(arcs != s_arcs) FREEMEM(arcs);
return ret ? XPBD_SYSTEM_FAILURE : XPBD_BODY_CONSUMED;
}
asn_dec_rval_t
OBJECT_IDENTIFIER_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **sptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
return xer_decode_primitive(opt_codec_ctx, td,
sptr, sizeof(OBJECT_IDENTIFIER_t), opt_mname,
buf_ptr, size, OBJECT_IDENTIFIER__xer_body_decode);
}
asn_enc_rval_t
OBJECT_IDENTIFIER_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
const OBJECT_IDENTIFIER_t *st = (const OBJECT_IDENTIFIER_t *)sptr;
asn_enc_rval_t er;
(void)ilevel;
(void)flags;
if(!st || !st->buf)
_ASN_ENCODE_FAILED;
er.encoded = OBJECT_IDENTIFIER__dump_body(st, cb, app_key);
if(er.encoded < 0) _ASN_ENCODE_FAILED;
_ASN_ENCODED_OK(er);
}
int
OBJECT_IDENTIFIER_print(asn_TYPE_descriptor_t *td, const void *sptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key) {
const OBJECT_IDENTIFIER_t *st = (const OBJECT_IDENTIFIER_t *)sptr;
(void)td; /* Unused argument */
(void)ilevel; /* Unused argument */
if(!st || !st->buf)
return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
/* Dump preamble */
if(cb("{ ", 2, app_key) < 0)
return -1;
if(OBJECT_IDENTIFIER__dump_body(st, cb, app_key) < 0)
return -1;
return (cb(" }", 2, app_key) < 0) ? -1 : 0;
}
int
OBJECT_IDENTIFIER_get_arcs(OBJECT_IDENTIFIER_t *oid, void *arcs,
unsigned int arc_type_size, unsigned int arc_slots) {
void *arcs_end = (char *)arcs + (arc_type_size * arc_slots);
int num_arcs = 0;
int startn = 0;
int add = 0;
int i;
if(!oid || !oid->buf || (arc_slots && arc_type_size <= 1)) {
errno = EINVAL;
return -1;
}
for(i = 0; i < oid->size; i++) {
uint8_t b = oid->buf[i];
if((b & 0x80)) /* Continuation expected */
continue;
if(num_arcs == 0) {
/*
* First two arcs are encoded through the backdoor.
*/
unsigned LE = 1; /* Little endian */
int first_arc;
num_arcs++;
if(!arc_slots) { num_arcs++; continue; }
if(i) first_arc = 2;
else if(b <= 39) first_arc = 0;
else if(b < 79) first_arc = 1;
else first_arc = 2;
add = -40 * first_arc;
memset(arcs, 0, arc_type_size);
*(unsigned char *)((char *)arcs
+ ((*(char *)&LE)?0:(arc_type_size - 1)))
= first_arc;
arcs = ((char *)arcs) + arc_type_size;
}
/* Decode, if has space */
if(arcs < arcs_end) {
if(OBJECT_IDENTIFIER_get_single_arc(&oid->buf[startn],
i - startn + 1, add,
arcs, arc_type_size))
return -1;
startn = i + 1;
arcs = ((char *)arcs) + arc_type_size;
add = 0;
}
num_arcs++;
}
return num_arcs;
}
/*
* Save the single value as an object identifier arc.
*/
int
OBJECT_IDENTIFIER_set_single_arc(uint8_t *arcbuf, const void *arcval, unsigned int arcval_size, int prepared_order) {
/*
* The following conditions must hold:
* assert(arcval);
* assert(arcval_size > 0);
* assert(arcval_size <= 16);
* assert(arcbuf);
*/
#ifdef WORDS_BIGENDIAN
const unsigned isLittleEndian = 0;
#else
unsigned LE = 1;
unsigned isLittleEndian = *(char *)&LE;
#endif
const uint8_t *tend, *tp;
unsigned int cache;
uint8_t *bp = arcbuf;
int bits;
uint8_t buffer[16];
if(isLittleEndian && !prepared_order) {
const uint8_t *a = (const unsigned char *)arcval + arcval_size - 1;
const uint8_t *aend = (const uint8_t *)arcval;
uint8_t *msb = buffer + arcval_size - 1;
uint8_t *tb;
for(tb = buffer; a >= aend; tb++, a--)
if((*tb = *a) && (tb < msb))
msb = tb;
tend = &buffer[arcval_size];
tp = msb; /* Most significant non-zero byte */
} else {
/* Look for most significant non-zero byte */
tend = (const unsigned char *)arcval + arcval_size;
for(tp = (const uint8_t *)arcval; tp < tend - 1; tp++)
if(*tp) break;
}
/*
* Split the value in 7-bits chunks.
*/
bits = ((tend - tp) * CHAR_BIT) % 7;
if(bits) {
cache = *tp >> (CHAR_BIT - bits);
if(cache) {
*bp++ = cache | 0x80;
cache = *tp++;
bits = CHAR_BIT - bits;
} else {
bits = -bits;
}
} else {
cache = 0;
}
for(; tp < tend; tp++) {
cache = (cache << CHAR_BIT) + *tp;
bits += CHAR_BIT;
while(bits >= 7) {
bits -= 7;
*bp++ = 0x80 | (cache >> bits);
}
}
if(bits) *bp++ = cache;
bp[-1] &= 0x7f; /* Clear the last bit */
return bp - arcbuf;
}
int
OBJECT_IDENTIFIER_set_arcs(OBJECT_IDENTIFIER_t *oid, const void *arcs, unsigned int arc_type_size, unsigned int arc_slots) {
uint8_t *buf;
uint8_t *bp;
unsigned LE = 1; /* Little endian (x86) */
unsigned isLittleEndian = *((char *)&LE);
unsigned int arc0;
unsigned int arc1;
unsigned size;
unsigned i;
if(!oid || !arcs || arc_type_size < 1
|| arc_type_size > 16
|| arc_slots < 2) {
errno = EINVAL;
return -1;
}
switch(arc_type_size) {
case sizeof(char):
arc0 = ((const unsigned char *)arcs)[0];
arc1 = ((const unsigned char *)arcs)[1];
break;
case sizeof(short):
arc0 = ((const unsigned short *)arcs)[0];
arc1 = ((const unsigned short *)arcs)[1];
break;
case sizeof(int):
arc0 = ((const unsigned int *)arcs)[0];
arc1 = ((const unsigned int *)arcs)[1];
break;
default:
arc1 = arc0 = 0;
if(isLittleEndian) { /* Little endian (x86) */
const unsigned char *ps, *pe;
/* If more significant bytes are present,
* make them > 255 quick */
for(ps = (const unsigned char *)arcs + 1, pe = ps+arc_type_size;
ps < pe; ps++)
arc0 |= *ps, arc1 |= *(ps + arc_type_size);
arc0 <<= CHAR_BIT, arc1 <<= CHAR_BIT;
arc0 = *((const unsigned char *)arcs + 0);
arc1 = *((const unsigned char *)arcs + arc_type_size);
} else {
const unsigned char *ps, *pe;
/* If more significant bytes are present,
* make them > 255 quick */
for(ps = (const unsigned char *)arcs, pe = ps+arc_type_size - 1; ps < pe; ps++)
arc0 |= *ps, arc1 |= *(ps + arc_type_size);
arc0 = *((const unsigned char *)arcs + arc_type_size - 1);
arc1 = *((const unsigned char *)arcs +(arc_type_size<< 1)-1);
}
}
/*
* The previous chapter left us with the first and the second arcs.
* The values are not precise (that is, they are valid only if
* they're less than 255), but OK for the purposes of making
* the sanity test below.
*/
if(arc0 <= 1) {
if(arc1 >= 39) {
/* 8.19.4: At most 39 subsequent values (including 0) */
errno = ERANGE;
return -1;
}
} else if(arc0 > 2) {
/* 8.19.4: Only three values are allocated from the root node */
errno = ERANGE;
return -1;
}
/*
* After above tests it is known that the value of arc0 is completely
* trustworthy (0..2). However, the arc1's value is still meaningless.
*/
/*
* Roughly estimate the maximum size necessary to encode these arcs.
* This estimation implicitly takes in account the following facts,
* that cancel each other:
* * the first two arcs are encoded in a single value.
* * the first value may require more space (+1 byte)
* * the value of the first arc which is in range (0..2)
*/
size = ((arc_type_size * CHAR_BIT + 6) / 7) * arc_slots;
bp = buf = (uint8_t *)MALLOC(size + 1);
if(!buf) {
/* ENOMEM */
return -1;
}
/*
* Encode the first two arcs.
* These require special treatment.
*/
{
uint8_t *tp;
uint8_t first_value[1 + 16]; /* of two arcs */
uint8_t *fv = first_value;
/*
* Simulate first_value = arc0 * 40 + arc1;
*/
/* Copy the second (1'st) arcs[1] into the first_value */
*fv++ = 0;
arcs = ((const char *)arcs) + arc_type_size;
if(isLittleEndian) {
const uint8_t *aend = (const unsigned char *)arcs - 1;
const uint8_t *a1 = (const unsigned char *)arcs + arc_type_size - 1;
for(; a1 > aend; fv++, a1--) *fv = *a1;
} else {
const uint8_t *a1 = (const uint8_t *)arcs;
const uint8_t *aend = a1 + arc_type_size;
for(; a1 < aend; fv++, a1++) *fv = *a1;
}
/* Increase the first_value by arc0 */
arc0 *= 40; /* (0..80) */
for(tp = first_value + arc_type_size; tp >= first_value; tp--) {
unsigned int v = *tp;
v += arc0;
*tp = v;
if(v >= (1 << CHAR_BIT)) arc0 = v >> CHAR_BIT;
else break;
}
assert(tp >= first_value);
bp += OBJECT_IDENTIFIER_set_single_arc(bp, first_value,
fv - first_value, 1);
}
/*
* Save the rest of arcs.
*/
for(arcs = ((const char *)arcs) + arc_type_size, i = 2;
i < arc_slots;
i++, arcs = ((const char *)arcs) + arc_type_size) {
bp += OBJECT_IDENTIFIER_set_single_arc(bp,
arcs, arc_type_size, 0);
}
assert((unsigned)(bp - buf) <= size);
/*
* Replace buffer.
*/
oid->size = bp - buf;
bp = oid->buf;
oid->buf = buf;
if(bp) FREEMEM(bp);
return 0;
}
int
OBJECT_IDENTIFIER_parse_arcs(const char *oid_text, ssize_t oid_txt_length,
long *arcs, unsigned int arcs_slots, const char **opt_oid_text_end) {
unsigned int arcs_count = 0;
const char *oid_end;
long value = 0;
enum {
ST_SKIPSPACE,
ST_WAITDIGITS, /* Next character is expected to be a digit */
ST_DIGITS
} state = ST_SKIPSPACE;
if(!oid_text || oid_txt_length < -1 || (arcs_slots && !arcs)) {
if(opt_oid_text_end) *opt_oid_text_end = oid_text;
errno = EINVAL;
return -1;
}
if(oid_txt_length == -1)
oid_txt_length = strlen(oid_text);
for(oid_end = oid_text + oid_txt_length; oid_text<oid_end; oid_text++) {
switch(*oid_text) {
case 0x09: case 0x0a: case 0x0d: case 0x20: /* whitespace */
if(state == ST_SKIPSPACE) {
continue;
} else {
break; /* Finish */
}
case 0x2e: /* '.' */
if(state != ST_DIGITS
|| (oid_text + 1) == oid_end) {
state = ST_WAITDIGITS;
break;
}
if(arcs_count < arcs_slots)
arcs[arcs_count] = value;
arcs_count++;
state = ST_WAITDIGITS;
continue;
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34:
case 0x35: case 0x36: case 0x37: case 0x38: case 0x39:
if(state != ST_DIGITS) {
state = ST_DIGITS;
value = 0;
}
if(1) {
long new_value = value * 10;
if(new_value / 10 != value
|| (value = new_value + (*oid_text - 0x30)) < 0) {
/* Overflow */
state = ST_WAITDIGITS;
break;
}
continue;
}
default:
/* Unexpected symbols */
state = ST_WAITDIGITS;
break;
} /* switch() */
break;
} /* for() */
if(opt_oid_text_end) *opt_oid_text_end = oid_text;
/* Finalize last arc */
switch(state) {
case ST_WAITDIGITS:
errno = EINVAL;
return -1;
case ST_DIGITS:
if(arcs_count < arcs_slots)
arcs[arcs_count] = value;
arcs_count++;
/* Fall through */
default:
return arcs_count;
}
}