Bochs/bochs/pc_system.h
Bryce Denney ffba22d72b - make BX_MAX_TIMERS a function of the number of processors, since each
processor's local apic registers one.  Now BX_MAX_TIMERS is
  (15+BX_SMP_PROCESSORS)
2002-10-23 15:13:10 +00:00

197 lines
6.4 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: pc_system.h,v 1.20 2002-10-23 15:13:10 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define BX_MAX_TIMERS (15+BX_SMP_PROCESSORS)
#define BX_NULL_TIMER_HANDLE 10000
#if BX_SHOW_IPS
extern unsigned long ips_count;
#endif
typedef void (*bx_timer_handler_t)(void *);
extern class bx_pc_system_c bx_pc_system;
#ifdef PROVIDE_M_IPS
extern double m_ips;
#endif
class bx_pc_system_c : private logfunctions {
private:
// ===============================
// Timer oriented private features
// ===============================
struct {
Boolean inUse; // Timer slot is in-use (currently registered).
Bit64u period; // Timer periodocity in cpu ticks.
Bit64u timeToFire; // Time to fire next (in absolute ticks).
Boolean active; // 0=inactive, 1=active.
Boolean continuous; // 0=one-shot timer, 1=continuous periodicity.
bx_timer_handler_t funct; // A callback function for when the
// timer fires.
void *this_ptr; // The this-> pointer for C++ callbacks
// has to be stored as well.
#define BxMaxTimerIDLen 32
char id[BxMaxTimerIDLen]; // String ID of timer.
} timer[BX_MAX_TIMERS];
unsigned numTimers; // Number of currently allocated timers.
Bit32u currCountdown; // Current countdown ticks value (decrements to 0).
Bit32u currCountdownPeriod; // Length of current countdown period.
Bit64u ticksTotal; // Num ticks total since start of emulator execution.
// A special null timer is always inserted in the timer[0] slot. This
// make sure that at least one timer is always active, and that the
// duration is always less than a maximum 32-bit integer, so a 32-bit
// counter can be used for the current countdown.
static const Bit64u NullTimerInterval;
static void nullTimer(void* this_ptr);
#if !defined(PROVIDE_M_IPS)
// This is the emulator speed, as measured in millions of
// x86 instructions per second that it can emulate on some hypothetically
// nomimal workload.
double m_ips; // Millions of Instructions Per Second
#endif
// This handler is called when the function which decrements the clock
// ticks finds that an event has occurred.
void countdownEvent(void);
public:
// ==============================
// Timer oriented public features
// ==============================
void init_ips(Bit32u ips);
int register_timer( void *this_ptr, bx_timer_handler_t, Bit32u useconds,
Boolean continuous, Boolean active, const char *id);
unsigned unregisterTimer(int timerID);
void start_timers(void);
void activate_timer( unsigned timer_index, Bit32u useconds,
Boolean continuous );
void deactivate_timer( unsigned timer_index );
static BX_CPP_INLINE void tick1(void) {
#if BX_SHOW_IPS
{
extern unsigned long ips_count;
ips_count++;
}
#endif
if (--bx_pc_system.currCountdown == 0) {
bx_pc_system.countdownEvent();
}
}
static BX_CPP_INLINE void tickn(Bit64u n) {
#if BX_SHOW_IPS
{
extern unsigned long ips_count;
ips_count += n;
}
#endif
while (n >= Bit64u(bx_pc_system.currCountdown)) {
n -= Bit64u(bx_pc_system.currCountdown);
bx_pc_system.currCountdown = 0;
bx_pc_system.countdownEvent();
// bx_pc_system.currCountdown is adjusted to new value by countdownevent().
};
// 'n' is not (or no longer) >= the countdown size. We can just decrement
// the remaining requested ticks and continue.
bx_pc_system.currCountdown -= Bit32u(n);
}
int register_timer_ticks(void* this_ptr, bx_timer_handler_t, Bit64u ticks,
Boolean continuous, Boolean active, const char *id);
void activate_timer_ticks(unsigned index, Bit64u instructions,
Boolean continuous);
Bit64u time_usec();
static BX_CPP_INLINE Bit64u time_ticks() {
return bx_pc_system.ticksTotal +
Bit64u(bx_pc_system.currCountdownPeriod - bx_pc_system.currCountdown);
}
static BX_CPP_INLINE Bit64u getTicksTotal(void) {
return bx_pc_system.ticksTotal;
}
static BX_CPP_INLINE Bit32u getNumCpuTicksLeftNextEvent(void) {
return bx_pc_system.currCountdown;
}
#if BX_DEBUGGER
static void timebp_handler(void* this_ptr);
#endif
// ===========================
// Non-timer oriented features
// ===========================
Boolean HRQ; // Hold Request
//Boolean INTR; // Interrupt
// Address line 20 control:
// 1 = enabled: extended memory is accessible
// 0 = disabled: A20 address line is forced low to simulate
// an 8088 address map
Boolean enable_a20;
// start out masking physical memory addresses to:
// 8086: 20 bits
// 286: 24 bits
// 386: 32 bits
// when A20 line is disabled, mask physical memory addresses to:
// 286: 20 bits
// 386: 20 bits
//
Bit32u a20_mask;
void set_HRQ(Boolean val); // set the Hold ReQuest line
void set_INTR(Boolean value); // set the INTR line to value
int IntEnabled( void );
int InterruptSignal( PCS_OP operation );
int ResetSignal( PCS_OP operation );
Bit8u IAC(void);
bx_pc_system_c(void);
Bit32u inp(Bit16u addr, unsigned io_len);
void outp(Bit16u addr, Bit32u value, unsigned io_len);
void set_enable_a20(Bit8u value);
Boolean get_enable_a20(void);
void exit(void);
};