3934 lines
136 KiB
C++
3934 lines
136 KiB
C++
/*============================================================================
|
|
This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
|
Package, Release 2b.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
these four paragraphs for those parts of this code that are retained.
|
|
=============================================================================*/
|
|
|
|
#define FLOAT128
|
|
|
|
/*============================================================================
|
|
* Adapted for Bochs (x86 achitecture simulator) by
|
|
* Stanislav Shwartsman [sshwarts at sourceforge net]
|
|
* ==========================================================================*/
|
|
|
|
#include "softfloat.h"
|
|
#include "softfloat-round-pack.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Primitive arithmetic functions, including multi-word arithmetic, and
|
|
| division and square root approximations. (Can be specialized to target
|
|
| if desired).
|
|
*----------------------------------------------------------------------------*/
|
|
#define USE_estimateDiv128To64
|
|
#define USE_estimateSqrt32
|
|
#include "softfloat-macros.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Functions and definitions to determine: (1) whether tininess for underflow
|
|
| is detected before or after rounding by default, (2) what (if anything)
|
|
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
|
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
|
|
| are propagated from function inputs to output. These details are target-
|
|
| specific.
|
|
*----------------------------------------------------------------------------*/
|
|
#include "softfloat-specialize.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the single-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 int32_to_float32(Bit32s a, float_status_t &status)
|
|
{
|
|
if (a == 0) return 0;
|
|
if (a == (Bit32s) 0x80000000) return packFloat32(1, 0x9E, 0);
|
|
int zSign = (a < 0);
|
|
return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the double-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 int32_to_float64(Bit32s a)
|
|
{
|
|
if (a == 0) return 0;
|
|
int zSign = (a < 0);
|
|
Bit32u absA = zSign ? -a : a;
|
|
int shiftCount = countLeadingZeros32(absA) + 21;
|
|
Bit64u zSig = absA;
|
|
return packFloat64(zSign, 0x432 - shiftCount, zSig<<shiftCount);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the single-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 int64_to_float32(Bit64s a, float_status_t &status)
|
|
{
|
|
if (a == 0) return 0;
|
|
int zSign = (a < 0);
|
|
Bit64u absA = zSign ? -a : a;
|
|
int shiftCount = countLeadingZeros64(absA) - 40;
|
|
if (0 <= shiftCount) {
|
|
return packFloat32(zSign, 0x95 - shiftCount, (Bit32u)(absA<<shiftCount));
|
|
}
|
|
else {
|
|
shiftCount += 7;
|
|
if (shiftCount < 0) {
|
|
absA = shift64RightJamming(absA, -shiftCount);
|
|
}
|
|
else {
|
|
absA <<= shiftCount;
|
|
}
|
|
return roundAndPackFloat32(zSign, 0x9C - shiftCount, (Bit32u) absA, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the double-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 int64_to_float64(Bit64s a, float_status_t &status)
|
|
{
|
|
if (a == 0) return 0;
|
|
if (a == (Bit64s) BX_CONST64(0x8000000000000000)) {
|
|
return packFloat64(1, 0x43E, 0);
|
|
}
|
|
int zSign = (a < 0);
|
|
return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit unsigned integer `a' to the
|
|
| single-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 uint32_to_float32(Bit32u a, float_status_t &status)
|
|
{
|
|
if (a == 0) return 0;
|
|
if (a & 0x80000000) return normalizeRoundAndPackFloat32(0, 0x9D, a >> 1, status);
|
|
return normalizeRoundAndPackFloat32(0, 0x9C, a, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit unsigned integer `a' to the
|
|
| double-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 uint32_to_float64(Bit32u a)
|
|
{
|
|
if (a == 0) return 0;
|
|
int shiftCount = countLeadingZeros32(a) + 21;
|
|
Bit64u zSig = a;
|
|
return packFloat64(0, 0x432 - shiftCount, zSig<<shiftCount);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit unsigned integer integer `a'
|
|
| to the single-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 uint64_to_float32(Bit64u a, float_status_t &status)
|
|
{
|
|
if (a == 0) return 0;
|
|
int shiftCount = countLeadingZeros64(a) - 40;
|
|
if (0 <= shiftCount) {
|
|
return packFloat32(0, 0x95 - shiftCount, (Bit32u)(a<<shiftCount));
|
|
}
|
|
else {
|
|
shiftCount += 7;
|
|
if (shiftCount < 0) {
|
|
a = shift64RightJamming(a, -shiftCount);
|
|
}
|
|
else {
|
|
a <<= shiftCount;
|
|
}
|
|
return roundAndPackFloat32(0, 0x9C - shiftCount, (Bit32u) a, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit unsigned integer integer `a'
|
|
| to the double-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 uint64_to_float64(Bit64u a, float_status_t &status)
|
|
{
|
|
if (a == 0) return 0;
|
|
if (a & BX_CONST64(0x8000000000000000))
|
|
return normalizeRoundAndPackFloat64(0, 0x43D, a >> 1, status);
|
|
return normalizeRoundAndPackFloat64(0, 0x43C, a, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic - which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN or the
|
|
| conversion overflows the integer indefinite value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s float32_to_int32(float32 a, float_status_t &status)
|
|
{
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
int aSign = extractFloat32Sign(a);
|
|
if ((aExp == 0xFF) && aSig) aSign = 0;
|
|
if (aExp) aSig |= 0x00800000;
|
|
else {
|
|
if (get_denormals_are_zeros(status)) aSig = 0;
|
|
}
|
|
int shiftCount = 0xAF - aExp;
|
|
Bit64u aSig64 = Bit64u(aSig) << 32;
|
|
if (0 < shiftCount) aSig64 = shift64RightJamming(aSig64, shiftCount);
|
|
return roundAndPackInt32(aSign, aSig64, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN or the conversion overflows, the integer indefinite
|
|
| value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s float32_to_int32_round_to_zero(float32 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit32u aSig;
|
|
Bit32s z;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
int shiftCount = aExp - 0x9E;
|
|
if (0 <= shiftCount) {
|
|
if (a != 0xCF000000) {
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return (Bit32s)(int32_indefinite);
|
|
}
|
|
else if (aExp <= 0x7E) {
|
|
if (get_denormals_are_zeros(status) && aExp == 0) aSig = 0;
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
aSig = (aSig | 0x800000)<<8;
|
|
z = aSig>>(-shiftCount);
|
|
if ((Bit32u) (aSig<<(shiftCount & 31))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
if (aSign) z = -z;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 32-bit unsigned integer format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic,
|
|
| except that the conversion is always rounded toward zero. If `a' is a NaN
|
|
| or conversion overflows, the largest positive integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32u float32_to_uint32_round_to_zero(float32 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit32u aSig;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
int shiftCount = aExp - 0x9E;
|
|
|
|
if (aExp <= 0x7E) {
|
|
if (get_denormals_are_zeros(status) && aExp == 0) aSig = 0;
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
else if (0 < shiftCount || aSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return uint32_indefinite;
|
|
}
|
|
|
|
aSig = (aSig | 0x800000)<<8;
|
|
Bit32u z = aSig >> (-shiftCount);
|
|
if (aSig << (shiftCount & 31)) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic - which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN or the
|
|
| conversion overflows, the integer indefinite value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s float32_to_int64(float32 a, float_status_t &status)
|
|
{
|
|
Bit64u aSig64, aSigExtra;
|
|
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
int aSign = extractFloat32Sign(a);
|
|
|
|
int shiftCount = 0xBE - aExp;
|
|
if (shiftCount < 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return (Bit64s)(int64_indefinite);
|
|
}
|
|
if (aExp) aSig |= 0x00800000;
|
|
else {
|
|
if (get_denormals_are_zeros(status)) aSig = 0;
|
|
}
|
|
aSig64 = aSig;
|
|
aSig64 <<= 40;
|
|
shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
|
|
return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN or the conversion overflows, the integer indefinite
|
|
| value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s float32_to_int64_round_to_zero(float32 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit32u aSig;
|
|
Bit64u aSig64;
|
|
Bit64s z;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
int shiftCount = aExp - 0xBE;
|
|
if (0 <= shiftCount) {
|
|
if (a != 0xDF000000) {
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return (Bit64s)(int64_indefinite);
|
|
}
|
|
else if (aExp <= 0x7E) {
|
|
if (get_denormals_are_zeros(status) && aExp == 0) aSig = 0;
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
aSig64 = aSig | 0x00800000;
|
|
aSig64 <<= 40;
|
|
z = aSig64>>(-shiftCount);
|
|
if ((Bit64u) (aSig64<<(shiftCount & 63))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
if (aSign) z = -z;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 64-bit unsigned integer format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic,
|
|
| except that the conversion is always rounded toward zero. If `a' is a NaN
|
|
| or the conversion overflows, the largest unsigned integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64u float32_to_uint64_round_to_zero(float32 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit32u aSig;
|
|
Bit64u aSig64;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
int shiftCount = aExp - 0xBE;
|
|
|
|
if (aExp <= 0x7E) {
|
|
if (get_denormals_are_zeros(status) && aExp == 0) aSig = 0;
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
else if (0 < shiftCount || aSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return uint64_indefinite;
|
|
}
|
|
|
|
aSig64 = aSig | 0x00800000;
|
|
aSig64 <<= 40;
|
|
Bit64u z = aSig64>>(-shiftCount);
|
|
if ((Bit64u) (aSig64<<(shiftCount & 63))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 64-bit unsigned integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN or the conversion
|
|
| overflows, the largest unsigned integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64u float32_to_uint64(float32 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp, shiftCount;
|
|
Bit32u aSig;
|
|
Bit64u aSig64, aSigExtra;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
}
|
|
|
|
if ((aSign) && (aExp > 0x7E)) {
|
|
float_raise(status, float_flag_invalid);
|
|
return uint64_indefinite;
|
|
}
|
|
|
|
shiftCount = 0xBE - aExp;
|
|
if (aExp) aSig |= 0x00800000;
|
|
|
|
if (shiftCount < 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return uint64_indefinite;
|
|
}
|
|
|
|
aSig64 = aSig;
|
|
aSig64 <<= 40;
|
|
shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
|
|
return roundAndPackUint64(aSign, aSig64, aSigExtra, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 32-bit unsigned integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN or the conversion
|
|
| overflows, the largest unsigned integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32u float32_to_uint32(float32 a, float_status_t &status)
|
|
{
|
|
Bit64u val_64 = float32_to_uint64(a, status);
|
|
|
|
if (val_64 > 0xffffffff) {
|
|
status.float_exception_flags = float_flag_invalid; // throw away other flags
|
|
return uint32_indefinite;
|
|
}
|
|
|
|
return (Bit32u) val_64;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the double-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float32_to_float64(float32 a, float_status_t &status)
|
|
{
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
int aSign = extractFloat32Sign(a);
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return commonNaNToFloat64(float32ToCommonNaN(a, status));
|
|
return packFloat64(aSign, 0x7FF, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0 || get_denormals_are_zeros(status))
|
|
return packFloat64(aSign, 0, 0);
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
--aExp;
|
|
}
|
|
return packFloat64(aSign, aExp + 0x380, ((Bit64u) aSig)<<29);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the single-precision floating-point value `a' to an integer, and
|
|
| returns the result as a single-precision floating-point value. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_round_to_int(float32 a, Bit8u scale, float_status_t &status)
|
|
{
|
|
Bit32u lastBitMask, roundBitsMask;
|
|
int roundingMode = get_float_rounding_mode(status);
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
scale &= 0xf;
|
|
|
|
if ((aExp == 0xFF) && extractFloat32Frac(a)) {
|
|
return propagateFloat32NaN(a, status);
|
|
}
|
|
|
|
aExp += scale; // scale the exponent
|
|
|
|
if (0x96 <= aExp) {
|
|
return a;
|
|
}
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float32_denormal_to_zero(a);
|
|
}
|
|
|
|
if (aExp <= 0x7E) {
|
|
if ((Bit32u) (a<<1) == 0) return a;
|
|
float_raise(status, float_flag_inexact);
|
|
int aSign = extractFloat32Sign(a);
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
if ((aExp == 0x7E) && extractFloat32Frac(a)) {
|
|
return packFloat32(aSign, 0x7F - scale, 0);
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return aSign ? packFloat32(1, 0x7F - scale, 0) : float32_positive_zero;
|
|
case float_round_up:
|
|
return aSign ? float32_negative_zero : packFloat32(0, 0x7F - scale, 0);
|
|
}
|
|
return packFloat32(aSign, 0, 0);
|
|
}
|
|
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x96 - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
float32 z = a;
|
|
if (roundingMode == float_round_nearest_even) {
|
|
z += lastBitMask>>1;
|
|
if ((z & roundBitsMask) == 0) z &= ~lastBitMask;
|
|
}
|
|
else if (roundingMode != float_round_to_zero) {
|
|
if (extractFloat32Sign(z) ^ (roundingMode == float_round_up)) {
|
|
z += roundBitsMask;
|
|
}
|
|
}
|
|
z &= ~roundBitsMask;
|
|
if (z != a) float_raise(status, float_flag_inexact);
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Extracts the fractional portion of single-precision floating-point value `a',
|
|
| and returns the result as a single-precision floating-point value. The
|
|
| fractional results are precise. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_frc(float32 a, float_status_t &status)
|
|
{
|
|
int roundingMode = get_float_rounding_mode(status);
|
|
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
int aSign = extractFloat32Sign(a);
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
|
|
if (aExp >= 0x96) {
|
|
return packFloat32(roundingMode == float_round_down, 0, 0);
|
|
}
|
|
|
|
if (aExp < 0x7F) {
|
|
if (aExp == 0) {
|
|
if (aSig == 0 || get_denormals_are_zeros(status))
|
|
return packFloat32(roundingMode == float_round_down, 0, 0);
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
if (! float_exception_masked(status, float_flag_underflow))
|
|
float_raise(status, float_flag_underflow);
|
|
|
|
if(get_flush_underflow_to_zero(status)) {
|
|
float_raise(status, float_flag_underflow | float_flag_inexact);
|
|
return packFloat32(aSign, 0, 0);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
Bit32u lastBitMask = 1 << (0x96 - aExp);
|
|
Bit32u roundBitsMask = lastBitMask - 1;
|
|
|
|
aSig &= roundBitsMask;
|
|
aSig <<= 7;
|
|
aExp--;
|
|
|
|
if (aSig == 0)
|
|
return packFloat32(roundingMode == float_round_down, 0, 0);
|
|
|
|
return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Extracts the exponent portion of single-precision floating-point value 'a',
|
|
| and returns the result as a single-precision floating-point value
|
|
| representing unbiased integer exponent. The operation is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_getexp(float32 a, float_status_t &status)
|
|
{
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, status);
|
|
return float32_positive_inf;
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
if (aSig == 0 || get_denormals_are_zeros(status))
|
|
return float32_negative_inf;
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
|
|
return int32_to_float32(aExp - 0x7F, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Extracts the mantissa of single-precision floating-point value 'a' and
|
|
| returns the result as a single-precision floating-point after applying
|
|
| the mantissa interval normalization and sign control. The operation is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_getmant(float32 a, float_status_t &status, int sign_ctrl, int interv)
|
|
{
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
int aSign = extractFloat32Sign(a);
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, status);
|
|
if (aSign) {
|
|
if (sign_ctrl & 0x2) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
}
|
|
return packFloat32(~sign_ctrl & aSign, 0x7F, 0);
|
|
}
|
|
|
|
if (aExp == 0 && (aSig == 0 || get_denormals_are_zeros(status))) {
|
|
return packFloat32(~sign_ctrl & aSign, 0x7F, 0);
|
|
}
|
|
|
|
if (aSign) {
|
|
if (sign_ctrl & 0x2) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
|
|
switch(interv) {
|
|
case 0x0: // interval [1,2)
|
|
aExp = 0x7F;
|
|
break;
|
|
case 0x1: // interval [1/2,2)
|
|
aExp -= 0x7F;
|
|
aExp = 0x7F - (aExp & 0x1);
|
|
break;
|
|
case 0x2: // interval [1/2,1)
|
|
aExp = 0x7E;
|
|
break;
|
|
case 0x3: // interval [3/4,3/2)
|
|
aExp = 0x7F - ((aSig >> 22) & 0x1);
|
|
break;
|
|
}
|
|
|
|
return packFloat32(~sign_ctrl & aSign, aExp, aSig);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Return the result of a floating point scale of the single-precision floating
|
|
| point value `a' by multiplying it by 2 power of the single-precision
|
|
| floating point value 'b' converted to integral value. If the result cannot
|
|
| be represented in single precision, then the proper overflow response (for
|
|
| positive scaling operand), or the proper underflow response (for negative
|
|
| scaling operand) is issued. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_scalef(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
int aSign = extractFloat32Sign(a);
|
|
Bit32u bSig = extractFloat32Frac(b);
|
|
Bit16s bExp = extractFloat32Exp(b);
|
|
int bSign = extractFloat32Sign(b);
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
}
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig) {
|
|
int aIsSignalingNaN = (aSig & 0x00400000) == 0;
|
|
if (aIsSignalingNaN || bExp != 0xFF || bSig)
|
|
return propagateFloat32NaN(a, b, status);
|
|
|
|
return bSign ? 0 : float32_positive_inf;
|
|
}
|
|
|
|
if (bExp == 0xFF && bSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if ((aExp | aSig) == 0) {
|
|
if (bExp == 0xFF && ! bSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if ((bExp | bSig) == 0) return a;
|
|
|
|
if (bExp == 0xFF) {
|
|
if (bSign) return packFloat32(aSign, 0, 0);
|
|
return packFloat32(aSign, 0xFF, 0);
|
|
}
|
|
|
|
if (bExp >= 0x8E) {
|
|
// handle obvious overflow/underflow result
|
|
return roundAndPackFloat32(aSign, bSign ? -0x7F : 0xFF, aSig, status);
|
|
}
|
|
|
|
int scale = 0;
|
|
|
|
if (bExp <= 0x7E) {
|
|
scale = -bSign;
|
|
}
|
|
else {
|
|
int shiftCount = bExp - 0x9E;
|
|
bSig = (bSig | 0x800000)<<8;
|
|
scale = bSig>>(-shiftCount);
|
|
|
|
if (bSign) {
|
|
if ((Bit32u) (bSig<<(shiftCount & 31))) scale++;
|
|
scale = -scale;
|
|
}
|
|
|
|
if (scale > 0x200) scale = 0x200;
|
|
if (scale < -0x200) scale = -0x200;
|
|
}
|
|
|
|
if (aExp != 0) {
|
|
aSig |= 0x00800000;
|
|
} else {
|
|
aExp++;
|
|
}
|
|
|
|
aExp += scale - 1;
|
|
aSig <<= 7;
|
|
return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the single-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 addFloat32Sigs(float32 a, float32 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit32u aSig, bSig, zSig;
|
|
Bit16s expDiff;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 6;
|
|
bSig <<= 6;
|
|
|
|
if (0 < expDiff) {
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if ((aExp == 0) && aSig)
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (bExp == 0) {
|
|
if (bSig) float_raise(status, float_flag_denormal);
|
|
--expDiff;
|
|
}
|
|
else bSig |= 0x20000000;
|
|
|
|
bSig = shift32RightJamming(bSig, expDiff);
|
|
zExp = aExp;
|
|
}
|
|
else if (expDiff < 0) {
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
if ((bExp == 0) && bSig)
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (aExp == 0) {
|
|
if (aSig) float_raise(status, float_flag_denormal);
|
|
++expDiff;
|
|
}
|
|
else aSig |= 0x20000000;
|
|
|
|
aSig = shift32RightJamming(aSig, -expDiff);
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if (aExp == 0xFF) {
|
|
if (aSig | bSig) return propagateFloat32NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (aExp == 0) {
|
|
zSig = (aSig + bSig) >> 6;
|
|
if (aSig | bSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
if (get_flush_underflow_to_zero(status)) {
|
|
float_raise(status, float_flag_underflow | float_flag_inexact);
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
if (! float_exception_masked(status, float_flag_underflow)) {
|
|
if (extractFloat32Frac(zSig) == zSig)
|
|
float_raise(status, float_flag_underflow);
|
|
}
|
|
}
|
|
return packFloat32(zSign, 0, zSig);
|
|
}
|
|
zSig = 0x40000000 + aSig + bSig;
|
|
return roundAndPackFloat32(zSign, aExp, zSig, status);
|
|
}
|
|
aSig |= 0x20000000;
|
|
zSig = (aSig + bSig)<<1;
|
|
--zExp;
|
|
if ((Bit32s) zSig < 0) {
|
|
zSig = aSig + bSig;
|
|
++zExp;
|
|
}
|
|
return roundAndPackFloat32(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the single-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 subFloat32Sigs(float32 a, float32 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit32u aSig, bSig, zSig;
|
|
Bit16s expDiff;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 7;
|
|
bSig <<= 7;
|
|
if (0 < expDiff) goto aExpBigger;
|
|
if (expDiff < 0) goto bExpBigger;
|
|
if (aExp == 0xFF) {
|
|
if (aSig | bSig) return propagateFloat32NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig | bSig) float_raise(status, float_flag_denormal);
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if (bSig < aSig) goto aBigger;
|
|
if (aSig < bSig) goto bBigger;
|
|
return packFloat32(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
bExpBigger:
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign ^ 1, 0xFF, 0);
|
|
}
|
|
if ((bExp == 0) && bSig)
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (aExp == 0) {
|
|
if (aSig) float_raise(status, float_flag_denormal);
|
|
++expDiff;
|
|
}
|
|
else aSig |= 0x40000000;
|
|
|
|
aSig = shift32RightJamming(aSig, -expDiff);
|
|
bSig |= 0x40000000;
|
|
bBigger:
|
|
zSig = bSig - aSig;
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if ((aExp == 0) && aSig)
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (bExp == 0) {
|
|
if (bSig) float_raise(status, float_flag_denormal);
|
|
--expDiff;
|
|
}
|
|
else bSig |= 0x40000000;
|
|
|
|
bSig = shift32RightJamming(bSig, expDiff);
|
|
aSig |= 0x40000000;
|
|
aBigger:
|
|
zSig = aSig - bSig;
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the single-precision floating-point values `a'
|
|
| and `b'. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_add(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
int aSign = extractFloat32Sign(a);
|
|
int bSign = extractFloat32Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return addFloat32Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return subFloat32Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the single-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_sub(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
int aSign = extractFloat32Sign(a);
|
|
int bSign = extractFloat32Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return subFloat32Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return addFloat32Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the single-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_mul(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
int aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit32u aSig, bSig;
|
|
Bit64u zSig64;
|
|
Bit32u zSig;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
bSign = extractFloat32Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig || ((bExp == 0xFF) && bSig))
|
|
return propagateFloat32NaN(a, b, status);
|
|
|
|
if ((bExp | bSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) return packFloat32(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
zExp = aExp + bExp - 0x7F;
|
|
aSig = (aSig | 0x00800000)<<7;
|
|
bSig = (bSig | 0x00800000)<<8;
|
|
zSig64 = shift64RightJamming(((Bit64u) aSig) * bSig, 32);
|
|
zSig = (Bit32u) zSig64;
|
|
if (0 <= (Bit32s) (zSig<<1)) {
|
|
zSig <<= 1;
|
|
--zExp;
|
|
}
|
|
return roundAndPackFloat32(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the single-precision floating-point value `a'
|
|
| by the corresponding value `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_div(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
int aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit32u aSig, bSig, zSig;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
bSign = extractFloat32Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, b, status);
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
float_raise(status, float_flag_divbyzero);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloat32(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = aExp - bExp + 0x7D;
|
|
aSig = (aSig | 0x00800000)<<7;
|
|
bSig = (bSig | 0x00800000)<<8;
|
|
if (bSig <= (aSig + aSig)) {
|
|
aSig >>= 1;
|
|
++zExp;
|
|
}
|
|
zSig = (((Bit64u) aSig)<<32) / bSig;
|
|
if ((zSig & 0x3F) == 0) {
|
|
zSig |= ((Bit64u) bSig * zSig != ((Bit64u) aSig)<<32);
|
|
}
|
|
return roundAndPackFloat32(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the single-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_sqrt(float32 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp, zExp;
|
|
Bit32u aSig, zSig;
|
|
Bit64u rem, term;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, status);
|
|
if (! aSign) return a;
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
}
|
|
|
|
if (aSign) {
|
|
if ((aExp | aSig) == 0) return packFloat32(aSign, 0, 0);
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return 0;
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = ((aExp - 0x7F)>>1) + 0x7E;
|
|
aSig = (aSig | 0x00800000)<<8;
|
|
zSig = estimateSqrt32(aExp, aSig) + 2;
|
|
if ((zSig & 0x7F) <= 5) {
|
|
if (zSig < 2) {
|
|
zSig = 0x7FFFFFFF;
|
|
goto roundAndPack;
|
|
}
|
|
aSig >>= aExp & 1;
|
|
term = ((Bit64u) zSig) * zSig;
|
|
rem = (((Bit64u) aSig)<<32) - term;
|
|
while ((Bit64s) rem < 0) {
|
|
--zSig;
|
|
rem += (((Bit64u) zSig)<<1) | 1;
|
|
}
|
|
zSig |= (rem != 0);
|
|
}
|
|
zSig = shift32RightJamming(zSig, 1);
|
|
roundAndPack:
|
|
return roundAndPackFloat32(0, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Determine single-precision floating-point number class.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float_class_t float32_class(float32 a)
|
|
{
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
int aSign = extractFloat32Sign(a);
|
|
|
|
if(aExp == 0xFF) {
|
|
if (aSig == 0)
|
|
return (aSign) ? float_negative_inf : float_positive_inf;
|
|
|
|
return (aSig & 0x00400000) ? float_QNaN : float_SNaN;
|
|
}
|
|
|
|
if(aExp == 0) {
|
|
if (aSig == 0) return float_zero;
|
|
return float_denormal;
|
|
}
|
|
|
|
return float_normalized;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two single precision floating point numbers. Returns
|
|
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
|
|
| the value 'a' is less than the corresponding value `b',
|
|
| 'float_relation_greater' if the value 'a' is greater than the corresponding
|
|
| value `b', or 'float_relation_unordered' otherwise.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_compare(float32 a, float32 b, int quiet, float_status_t &status)
|
|
{
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float32_denormal_to_zero(a);
|
|
b = float32_denormal_to_zero(b);
|
|
}
|
|
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_SNaN || bClass == float_SNaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (aClass == float_QNaN || bClass == float_QNaN) {
|
|
if (! quiet) float_raise(status, float_flag_invalid);
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
if ((a == b) || ((Bit32u) ((a | b)<<1) == 0)) return float_relation_equal;
|
|
|
|
int aSign = extractFloat32Sign(a);
|
|
int bSign = extractFloat32Sign(b);
|
|
if (aSign != bSign)
|
|
return (aSign) ? float_relation_less : float_relation_greater;
|
|
|
|
if (aSign ^ (a < b)) return float_relation_less;
|
|
return float_relation_greater;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two single precision floating point numbers and return the
|
|
| smaller of them.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_min(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float32_denormal_to_zero(a);
|
|
b = float32_denormal_to_zero(b);
|
|
}
|
|
|
|
return (float32_compare(a, b, status) == float_relation_less) ? a : b;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two single precision floating point numbers and return the
|
|
| larger of them.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_max(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float32_denormal_to_zero(a);
|
|
b = float32_denormal_to_zero(b);
|
|
}
|
|
|
|
return (float32_compare(a, b, status) == float_relation_greater) ? a : b;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two single precision floating point numbers and return the
|
|
| smaller/larger of them. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_minmax(float32 a, float32 b, int is_min, int is_abs, float_status_t &status)
|
|
{
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float32_denormal_to_zero(a);
|
|
b = float32_denormal_to_zero(b);
|
|
}
|
|
|
|
if (float32_is_nan(a) || float32_is_nan(b)) {
|
|
if (! float32_is_signaling_nan(a) && ! float32_is_nan(b)) {
|
|
return b;
|
|
} else if (! float32_is_signaling_nan(b) && ! float32_is_nan(a)) {
|
|
return a;
|
|
}
|
|
return propagateFloat32NaN(a, b, status);
|
|
}
|
|
|
|
int aSign = 0, bSign = 0;
|
|
if (! is_abs) {
|
|
aSign = extractFloat32Sign(a);
|
|
bSign = extractFloat32Sign(b);
|
|
}
|
|
|
|
if (float32_is_denormal(a) || float32_is_denormal(b))
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (aSign != bSign) {
|
|
if (is_min) {
|
|
return aSign ? a : b;
|
|
} else {
|
|
return aSign ? b : a;
|
|
}
|
|
} else {
|
|
if (is_min) {
|
|
return (aSign ^ (a < b)) ? a : b;
|
|
} else {
|
|
return (aSign ^ (a < b)) ? b : a;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic - which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN or the
|
|
| conversion overflows, the integer indefinite value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s float64_to_int32(float64 a, float_status_t &status)
|
|
{
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
int aSign = extractFloat64Sign(a);
|
|
if ((aExp == 0x7FF) && aSig) aSign = 0;
|
|
if (aExp) aSig |= BX_CONST64(0x0010000000000000);
|
|
else {
|
|
if (get_denormals_are_zeros(status)) aSig = 0;
|
|
}
|
|
int shiftCount = 0x42C - aExp;
|
|
if (0 < shiftCount) aSig = shift64RightJamming(aSig, shiftCount);
|
|
return roundAndPackInt32(aSign, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN or the conversion overflows, the integer indefinite
|
|
| value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s float64_to_int32_round_to_zero(float64 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig, savedASig;
|
|
Bit32s z;
|
|
int shiftCount;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (0x41E < aExp) {
|
|
float_raise(status, float_flag_invalid);
|
|
return (Bit32s)(int32_indefinite);
|
|
}
|
|
else if (aExp < 0x3FF) {
|
|
if (get_denormals_are_zeros(status) && aExp == 0) aSig = 0;
|
|
if (aExp || aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
aSig |= BX_CONST64(0x0010000000000000);
|
|
shiftCount = 0x433 - aExp;
|
|
savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
z = (Bit32s) aSig;
|
|
if (aSign) z = -z;
|
|
if ((z < 0) ^ aSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return (Bit32s)(int32_indefinite);
|
|
}
|
|
if ((aSig<<shiftCount) != savedASig) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 32-bit unsigned integer format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic,
|
|
| except that the conversion is always rounded toward zero. If `a' is a NaN
|
|
| or conversion overflows, the largest positive integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32u float64_to_uint32_round_to_zero(float64 a, float_status_t &status)
|
|
{
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
int aSign = extractFloat64Sign(a);
|
|
|
|
if (aExp < 0x3FF) {
|
|
if (get_denormals_are_zeros(status) && aExp == 0) aSig = 0;
|
|
if (aExp || aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
|
|
if (0x41E < aExp || aSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return uint32_indefinite;
|
|
}
|
|
|
|
aSig |= BX_CONST64(0x0010000000000000);
|
|
int shiftCount = 0x433 - aExp;
|
|
Bit64u savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
if ((aSig<<shiftCount) != savedASig) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
return (Bit32u) aSig;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic - which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s float64_to_int64(float64 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig, aSigExtra;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (aExp) aSig |= BX_CONST64(0x0010000000000000);
|
|
else {
|
|
if (get_denormals_are_zeros(status)) aSig = 0;
|
|
}
|
|
int shiftCount = 0x433 - aExp;
|
|
if (shiftCount <= 0) {
|
|
if (0x43E < aExp) {
|
|
float_raise(status, float_flag_invalid);
|
|
return (Bit64s)(int64_indefinite);
|
|
}
|
|
aSigExtra = 0;
|
|
aSig <<= -shiftCount;
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
|
|
}
|
|
return roundAndPackInt64(aSign, aSig, aSigExtra, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN or the conversion overflows, the integer indefinite
|
|
| value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s float64_to_int64_round_to_zero(float64 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig;
|
|
Bit64s z;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (aExp) aSig |= BX_CONST64(0x0010000000000000);
|
|
int shiftCount = aExp - 0x433;
|
|
if (0 <= shiftCount) {
|
|
if (0x43E <= aExp) {
|
|
if (a != BX_CONST64(0xC3E0000000000000)) {
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return (Bit64s)(int64_indefinite);
|
|
}
|
|
z = aSig<<shiftCount;
|
|
}
|
|
else {
|
|
if (aExp < 0x3FE) {
|
|
if (get_denormals_are_zeros(status) && aExp == 0) aSig = 0;
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
z = aSig>>(-shiftCount);
|
|
if ((Bit64u) (aSig<<(shiftCount & 63))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
}
|
|
if (aSign) z = -z;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 64-bit unsigned integer format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic,
|
|
| except that the conversion is always rounded toward zero. If `a' is a NaN
|
|
| or the conversion overflows, the largest unsigned integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64u float64_to_uint64_round_to_zero(float64 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig, z;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
|
|
if (aExp < 0x3FE) {
|
|
if (get_denormals_are_zeros(status) && aExp == 0) aSig = 0;
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
|
|
if (0x43E <= aExp || aSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return uint64_indefinite;
|
|
}
|
|
|
|
if (aExp) aSig |= BX_CONST64(0x0010000000000000);
|
|
int shiftCount = aExp - 0x433;
|
|
|
|
if (0 <= shiftCount) {
|
|
z = aSig<<shiftCount;
|
|
}
|
|
else {
|
|
z = aSig>>(-shiftCount);
|
|
if ((Bit64u) (aSig<<(shiftCount & 63))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 32-bit unsigned integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN or the conversion
|
|
| overflows, the largest unsigned integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32u float64_to_uint32(float64 a, float_status_t &status)
|
|
{
|
|
Bit64u val_64 = float64_to_uint64(a, status);
|
|
|
|
if (val_64 > 0xffffffff) {
|
|
status.float_exception_flags = float_flag_invalid; // throw away other flags
|
|
return uint32_indefinite;
|
|
}
|
|
|
|
return (Bit32u) val_64;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 64-bit unsigned integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN or the conversion
|
|
| overflows, the largest unsigned integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64u float64_to_uint64(float64 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp, shiftCount;
|
|
Bit64u aSig, aSigExtra;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
}
|
|
|
|
if (aSign && (aExp > 0x3FE)) {
|
|
float_raise(status, float_flag_invalid);
|
|
return uint64_indefinite;
|
|
}
|
|
|
|
if (aExp) {
|
|
aSig |= BX_CONST64(0x0010000000000000);
|
|
}
|
|
shiftCount = 0x433 - aExp;
|
|
if (shiftCount <= 0) {
|
|
if (0x43E < aExp) {
|
|
float_raise(status, float_flag_invalid);
|
|
return uint64_indefinite;
|
|
}
|
|
aSigExtra = 0;
|
|
aSig <<= -shiftCount;
|
|
} else {
|
|
shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
|
|
}
|
|
|
|
return roundAndPackUint64(aSign, aSig, aSigExtra, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the single-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float64_to_float32(float64 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig;
|
|
Bit32u zSig;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return commonNaNToFloat32(float64ToCommonNaN(a, status));
|
|
return packFloat32(aSign, 0xFF, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0 || get_denormals_are_zeros(status))
|
|
return packFloat32(aSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
aSig = shift64RightJamming(aSig, 22);
|
|
zSig = (Bit32u) aSig;
|
|
if (aExp || zSig) {
|
|
zSig |= 0x40000000;
|
|
aExp -= 0x381;
|
|
}
|
|
return roundAndPackFloat32(aSign, aExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the double-precision floating-point value `a' to an integer, and
|
|
| returns the result as a double-precision floating-point value. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_round_to_int(float64 a, Bit8u scale, float_status_t &status)
|
|
{
|
|
Bit64u lastBitMask, roundBitsMask;
|
|
int roundingMode = get_float_rounding_mode(status);
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
scale &= 0xf;
|
|
|
|
if ((aExp == 0x7FF) && extractFloat64Frac(a)) {
|
|
return propagateFloat64NaN(a, status);
|
|
}
|
|
|
|
aExp += scale; // scale the exponent
|
|
|
|
if (0x433 <= aExp) {
|
|
return a;
|
|
}
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float64_denormal_to_zero(a);
|
|
}
|
|
|
|
if (aExp < 0x3FF) {
|
|
if ((Bit64u) (a<<1) == 0) return a;
|
|
float_raise(status, float_flag_inexact);
|
|
int aSign = extractFloat64Sign(a);
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
if ((aExp == 0x3FE) && extractFloat64Frac(a)) {
|
|
return packFloat64(aSign, 0x3FF - scale, 0);
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return aSign ? packFloat64(1, 0x3FF - scale, 0) : float64_positive_zero;
|
|
case float_round_up:
|
|
return aSign ? float64_negative_zero : packFloat64(0, 0x3FF - scale, 0);
|
|
}
|
|
return packFloat64(aSign, 0, 0);
|
|
}
|
|
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x433 - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
float64 z = a;
|
|
if (roundingMode == float_round_nearest_even) {
|
|
z += lastBitMask>>1;
|
|
if ((z & roundBitsMask) == 0) z &= ~lastBitMask;
|
|
}
|
|
else if (roundingMode != float_round_to_zero) {
|
|
if (extractFloat64Sign(z) ^ (roundingMode == float_round_up)) {
|
|
z += roundBitsMask;
|
|
}
|
|
}
|
|
z &= ~roundBitsMask;
|
|
if (z != a) float_raise(status, float_flag_inexact);
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Extracts the fractional portion of double-precision floating-point value `a',
|
|
| and returns the result as a double-precision floating-point value. The
|
|
| fractional results are precise. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_frc(float64 a, float_status_t &status)
|
|
{
|
|
int roundingMode = get_float_rounding_mode(status);
|
|
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
int aSign = extractFloat64Sign(a);
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
|
|
if (aExp >= 0x433) {
|
|
return packFloat64(roundingMode == float_round_down, 0, 0);
|
|
}
|
|
|
|
if (aExp < 0x3FF) {
|
|
if (aExp == 0) {
|
|
if (aSig == 0 || get_denormals_are_zeros(status))
|
|
return packFloat64(roundingMode == float_round_down, 0, 0);
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
if (! float_exception_masked(status, float_flag_underflow))
|
|
float_raise(status, float_flag_underflow);
|
|
|
|
if(get_flush_underflow_to_zero(status)) {
|
|
float_raise(status, float_flag_underflow | float_flag_inexact);
|
|
return packFloat64(aSign, 0, 0);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
Bit64u lastBitMask = BX_CONST64(1) << (0x433 - aExp);
|
|
Bit64u roundBitsMask = lastBitMask - 1;
|
|
|
|
aSig &= roundBitsMask;
|
|
aSig <<= 10;
|
|
aExp--;
|
|
|
|
if (aSig == 0)
|
|
return packFloat64(roundingMode == float_round_down, 0, 0);
|
|
|
|
return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Extracts the exponent portion of double-precision floating-point value 'a',
|
|
| and returns the result as a double-precision floating-point value
|
|
| representing unbiased integer exponent. The operation is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_getexp(float64 a, float_status_t &status)
|
|
{
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, status);
|
|
return float64_positive_inf;
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
if (aSig == 0 || get_denormals_are_zeros(status))
|
|
return float64_negative_inf;
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
|
|
return int32_to_float64(aExp - 0x3FF);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Extracts the mantissa of double-precision floating-point value 'a' and
|
|
| returns the result as a double-precision floating-point after applying
|
|
| the mantissa interval normalization and sign control. The operation is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_getmant(float64 a, float_status_t &status, int sign_ctrl, int interv)
|
|
{
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
int aSign = extractFloat64Sign(a);
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, status);
|
|
if (aSign) {
|
|
if (sign_ctrl & 0x2) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
}
|
|
return packFloat64(~sign_ctrl & aSign, 0x3FF, 0);
|
|
}
|
|
|
|
if (aExp == 0 && (aSig == 0 || get_denormals_are_zeros(status))) {
|
|
return packFloat64(~sign_ctrl & aSign, 0x3FF, 0);
|
|
}
|
|
|
|
if (aSign) {
|
|
if (sign_ctrl & 0x2) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
|
|
switch(interv) {
|
|
case 0x0: // interval [1,2)
|
|
aExp = 0x3FF;
|
|
break;
|
|
case 0x1: // interval [1/2,2)
|
|
aExp -= 0x3FF;
|
|
aExp = 0x3FF - (aExp & 0x1);
|
|
break;
|
|
case 0x2: // interval [1/2,1)
|
|
aExp = 0x3FE;
|
|
break;
|
|
case 0x3: // interval [3/4,3/2)
|
|
aExp = 0x3FF - ((aSig >> 51) & 0x1);
|
|
break;
|
|
}
|
|
|
|
return packFloat64(~sign_ctrl & aSign, aExp, aSig);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Return the result of a floating point scale of the double-precision floating
|
|
| point value `a' by multiplying it by 2 power of the double-precision
|
|
| floating point value 'b' converted to integral value. If the result cannot
|
|
| be represented in double precision, then the proper overflow response (for
|
|
| positive scaling operand), or the proper underflow response (for negative
|
|
| scaling operand) is issued. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_scalef(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
int aSign = extractFloat64Sign(a);
|
|
Bit64u bSig = extractFloat64Frac(b);
|
|
Bit16s bExp = extractFloat64Exp(b);
|
|
int bSign = extractFloat64Sign(b);
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
}
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) {
|
|
int aIsSignalingNaN = (aSig & BX_CONST64(0x0008000000000000)) == 0;
|
|
if (aIsSignalingNaN || bExp != 0x7FF || bSig)
|
|
return propagateFloat64NaN(a, b, status);
|
|
|
|
return bSign ? 0 : float64_positive_inf;
|
|
}
|
|
|
|
if (bExp == 0x7FF && bSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if ((aExp | aSig) == 0) {
|
|
if (bExp == 0x7FF && ! bSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if ((bExp | bSig) == 0) return a;
|
|
|
|
if (bExp == 0x7FF) {
|
|
if (bSign) return packFloat64(aSign, 0, 0);
|
|
return packFloat64(aSign, 0x7FF, 0);
|
|
}
|
|
|
|
if (0x40F <= bExp) {
|
|
// handle obvious overflow/underflow result
|
|
return roundAndPackFloat64(aSign, bSign ? -0x3FF : 0x7FF, aSig, status);
|
|
}
|
|
|
|
int scale = 0;
|
|
|
|
if (bExp < 0x3FF) {
|
|
scale = -bSign;
|
|
}
|
|
else {
|
|
bSig |= BX_CONST64(0x0010000000000000);
|
|
int shiftCount = 0x433 - bExp;
|
|
Bit64u savedBSig = bSig;
|
|
bSig >>= shiftCount;
|
|
scale = (Bit32s) bSig;
|
|
if (bSign) {
|
|
if ((bSig<<shiftCount) != savedBSig) scale++;
|
|
scale = -scale;
|
|
}
|
|
|
|
if (scale > 0x1000) scale = 0x1000;
|
|
if (scale < -0x1000) scale = -0x1000;
|
|
}
|
|
|
|
if (aExp != 0) {
|
|
aSig |= BX_CONST64(0x0010000000000000);
|
|
} else {
|
|
aExp++;
|
|
}
|
|
|
|
aExp += scale - 1;
|
|
aSig <<= 10;
|
|
return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the double-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 addFloat64Sigs(float64 a, float64 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig;
|
|
Bit16s expDiff;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 9;
|
|
bSig <<= 9;
|
|
if (0 < expDiff) {
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if ((aExp == 0) && aSig)
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (bExp == 0) {
|
|
if (bSig) float_raise(status, float_flag_denormal);
|
|
--expDiff;
|
|
}
|
|
else bSig |= BX_CONST64(0x2000000000000000);
|
|
|
|
bSig = shift64RightJamming(bSig, expDiff);
|
|
zExp = aExp;
|
|
}
|
|
else if (expDiff < 0) {
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
if ((bExp == 0) && bSig)
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (aExp == 0) {
|
|
if (aSig) float_raise(status, float_flag_denormal);
|
|
++expDiff;
|
|
}
|
|
else aSig |= BX_CONST64(0x2000000000000000);
|
|
|
|
aSig = shift64RightJamming(aSig, -expDiff);
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if (aExp == 0x7FF) {
|
|
if (aSig | bSig) return propagateFloat64NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (aExp == 0) {
|
|
zSig = (aSig + bSig) >> 9;
|
|
if (aSig | bSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
if (get_flush_underflow_to_zero(status)) {
|
|
float_raise(status, float_flag_underflow | float_flag_inexact);
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
if (! float_exception_masked(status, float_flag_underflow)) {
|
|
if (extractFloat64Frac(zSig) == zSig)
|
|
float_raise(status, float_flag_underflow);
|
|
}
|
|
}
|
|
return packFloat64(zSign, 0, zSig);
|
|
}
|
|
zSig = BX_CONST64(0x4000000000000000) + aSig + bSig;
|
|
return roundAndPackFloat64(zSign, aExp, zSig, status);
|
|
}
|
|
aSig |= BX_CONST64(0x2000000000000000);
|
|
zSig = (aSig + bSig)<<1;
|
|
--zExp;
|
|
if ((Bit64s) zSig < 0) {
|
|
zSig = aSig + bSig;
|
|
++zExp;
|
|
}
|
|
return roundAndPackFloat64(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the double-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 subFloat64Sigs(float64 a, float64 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig;
|
|
Bit16s expDiff;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 10;
|
|
bSig <<= 10;
|
|
if (0 < expDiff) goto aExpBigger;
|
|
if (expDiff < 0) goto bExpBigger;
|
|
if (aExp == 0x7FF) {
|
|
if (aSig | bSig) return propagateFloat64NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig | bSig) float_raise(status, float_flag_denormal);
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if (bSig < aSig) goto aBigger;
|
|
if (aSig < bSig) goto bBigger;
|
|
return packFloat64(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
bExpBigger:
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign ^ 1, 0x7FF, 0);
|
|
}
|
|
if ((bExp == 0) && bSig)
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (aExp == 0) {
|
|
if (aSig) float_raise(status, float_flag_denormal);
|
|
++expDiff;
|
|
}
|
|
else aSig |= BX_CONST64(0x4000000000000000);
|
|
|
|
aSig = shift64RightJamming(aSig, -expDiff);
|
|
bSig |= BX_CONST64(0x4000000000000000);
|
|
bBigger:
|
|
zSig = bSig - aSig;
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if ((aExp == 0) && aSig)
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (bExp == 0) {
|
|
if (bSig) float_raise(status, float_flag_denormal);
|
|
--expDiff;
|
|
}
|
|
else bSig |= BX_CONST64(0x4000000000000000);
|
|
|
|
bSig = shift64RightJamming(bSig, expDiff);
|
|
aSig |= BX_CONST64(0x4000000000000000);
|
|
aBigger:
|
|
zSig = aSig - bSig;
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the double-precision floating-point values `a'
|
|
| and `b'. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_add(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
int aSign = extractFloat64Sign(a);
|
|
int bSign = extractFloat64Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return addFloat64Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return subFloat64Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the double-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_sub(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
int aSign = extractFloat64Sign(a);
|
|
int bSign = extractFloat64Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return subFloat64Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return addFloat64Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the double-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_mul(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
int aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
bSign = extractFloat64Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig || ((bExp == 0x7FF) && bSig)) {
|
|
return propagateFloat64NaN(a, b, status);
|
|
}
|
|
if ((bExp | bSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) return packFloat64(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
zExp = aExp + bExp - 0x3FF;
|
|
aSig = (aSig | BX_CONST64(0x0010000000000000))<<10;
|
|
bSig = (bSig | BX_CONST64(0x0010000000000000))<<11;
|
|
mul64To128(aSig, bSig, &zSig0, &zSig1);
|
|
zSig0 |= (zSig1 != 0);
|
|
if (0 <= (Bit64s) (zSig0<<1)) {
|
|
zSig0 <<= 1;
|
|
--zExp;
|
|
}
|
|
return roundAndPackFloat64(zSign, zExp, zSig0, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the double-precision floating-point value `a'
|
|
| by the corresponding value `b'. The operation is performed according to
|
|
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_div(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
int aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig;
|
|
Bit64u rem0, rem1;
|
|
Bit64u term0, term1;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
bSign = extractFloat64Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
if (bExp == 0) bSig = 0;
|
|
}
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, b, status);
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
float_raise(status, float_flag_divbyzero);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloat64(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = aExp - bExp + 0x3FD;
|
|
aSig = (aSig | BX_CONST64(0x0010000000000000))<<10;
|
|
bSig = (bSig | BX_CONST64(0x0010000000000000))<<11;
|
|
if (bSig <= (aSig + aSig)) {
|
|
aSig >>= 1;
|
|
++zExp;
|
|
}
|
|
zSig = estimateDiv128To64(aSig, 0, bSig);
|
|
if ((zSig & 0x1FF) <= 2) {
|
|
mul64To128(bSig, zSig, &term0, &term1);
|
|
sub128(aSig, 0, term0, term1, &rem0, &rem1);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig;
|
|
add128(rem0, rem1, 0, bSig, &rem0, &rem1);
|
|
}
|
|
zSig |= (rem1 != 0);
|
|
}
|
|
return roundAndPackFloat64(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the double-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_sqrt(float64 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit16s aExp, zExp;
|
|
Bit64u aSig, zSig, doubleZSig;
|
|
Bit64u rem0, rem1, term0, term1;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, status);
|
|
if (! aSign) return a;
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
|
|
if (get_denormals_are_zeros(status)) {
|
|
if (aExp == 0) aSig = 0;
|
|
}
|
|
|
|
if (aSign) {
|
|
if ((aExp | aSig) == 0) return packFloat64(aSign, 0, 0);
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return 0;
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = ((aExp - 0x3FF)>>1) + 0x3FE;
|
|
aSig |= BX_CONST64(0x0010000000000000);
|
|
zSig = estimateSqrt32(aExp, (Bit32u)(aSig>>21));
|
|
aSig <<= 9 - (aExp & 1);
|
|
zSig = estimateDiv128To64(aSig, 0, zSig<<32) + (zSig<<30);
|
|
if ((zSig & 0x1FF) <= 5) {
|
|
doubleZSig = zSig<<1;
|
|
mul64To128(zSig, zSig, &term0, &term1);
|
|
sub128(aSig, 0, term0, term1, &rem0, &rem1);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig;
|
|
doubleZSig -= 2;
|
|
add128(rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1);
|
|
}
|
|
zSig |= ((rem0 | rem1) != 0);
|
|
}
|
|
return roundAndPackFloat64(0, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Determine double-precision floating-point number class
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float_class_t float64_class(float64 a)
|
|
{
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
int aSign = extractFloat64Sign(a);
|
|
|
|
if(aExp == 0x7FF) {
|
|
if (aSig == 0)
|
|
return (aSign) ? float_negative_inf : float_positive_inf;
|
|
|
|
return (aSig & BX_CONST64(0x0008000000000000)) ? float_QNaN : float_SNaN;
|
|
}
|
|
|
|
if(aExp == 0) {
|
|
if (aSig == 0)
|
|
return float_zero;
|
|
return float_denormal;
|
|
}
|
|
|
|
return float_normalized;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two double precision floating point numbers. Returns
|
|
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
|
|
| the value 'a' is less than the corresponding value `b',
|
|
| 'float_relation_greater' if the value 'a' is greater than the corresponding
|
|
| value `b', or 'float_relation_unordered' otherwise.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_compare(float64 a, float64 b, int quiet, float_status_t &status)
|
|
{
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float64_denormal_to_zero(a);
|
|
b = float64_denormal_to_zero(b);
|
|
}
|
|
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_SNaN || bClass == float_SNaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (aClass == float_QNaN || bClass == float_QNaN) {
|
|
if (! quiet) float_raise(status, float_flag_invalid);
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
if ((a == b) || ((Bit64u) ((a | b)<<1) == 0)) return float_relation_equal;
|
|
|
|
int aSign = extractFloat64Sign(a);
|
|
int bSign = extractFloat64Sign(b);
|
|
if (aSign != bSign)
|
|
return (aSign) ? float_relation_less : float_relation_greater;
|
|
|
|
if (aSign ^ (a < b)) return float_relation_less;
|
|
return float_relation_greater;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two double precision floating point numbers and return the
|
|
| smaller of them.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_min(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float64_denormal_to_zero(a);
|
|
b = float64_denormal_to_zero(b);
|
|
}
|
|
|
|
return (float64_compare(a, b, status) == float_relation_less) ? a : b;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two double precision floating point numbers and return the
|
|
| larger of them.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_max(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float64_denormal_to_zero(a);
|
|
b = float64_denormal_to_zero(b);
|
|
}
|
|
|
|
return (float64_compare(a, b, status) == float_relation_greater) ? a : b;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two double precision floating point numbers and return the
|
|
| smaller/larger of them. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_minmax(float64 a, float64 b, int is_min, int is_abs, float_status_t &status)
|
|
{
|
|
if (get_denormals_are_zeros(status)) {
|
|
a = float64_denormal_to_zero(a);
|
|
b = float64_denormal_to_zero(b);
|
|
}
|
|
|
|
if (float64_is_nan(a) || float64_is_nan(b)) {
|
|
if (! float64_is_signaling_nan(a) && ! float64_is_nan(b)) {
|
|
return b;
|
|
} else if (! float64_is_signaling_nan(b) && ! float64_is_nan(a)) {
|
|
return a;
|
|
}
|
|
return propagateFloat64NaN(a, b, status);
|
|
}
|
|
|
|
int aSign = 0, bSign = 0;
|
|
if (! is_abs) {
|
|
aSign = extractFloat64Sign(a);
|
|
bSign = extractFloat64Sign(b);
|
|
}
|
|
|
|
if (float64_is_denormal(a) || float64_is_denormal(b))
|
|
float_raise(status, float_flag_denormal);
|
|
|
|
if (aSign != bSign) {
|
|
if (is_min) {
|
|
return aSign ? a : b;
|
|
} else {
|
|
return aSign ? b : a;
|
|
}
|
|
} else {
|
|
if (is_min) {
|
|
return (aSign ^ (a < b)) ? a : b;
|
|
} else {
|
|
return (aSign ^ (a < b)) ? b : a;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef FLOATX80
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 int32_to_floatx80(Bit32s a)
|
|
{
|
|
if (a == 0) return packFloatx80(0, 0, 0);
|
|
int zSign = (a < 0);
|
|
Bit32u absA = zSign ? -a : a;
|
|
int shiftCount = countLeadingZeros32(absA) + 32;
|
|
Bit64u zSig = absA;
|
|
return packFloatx80(zSign, 0x403E - shiftCount, zSig<<shiftCount);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 int64_to_floatx80(Bit64s a)
|
|
{
|
|
if (a == 0) return packFloatx80(0, 0, 0);
|
|
int zSign = (a < 0);
|
|
Bit64u absA = zSign ? -a : a;
|
|
int shiftCount = countLeadingZeros64(absA);
|
|
return packFloatx80(zSign, 0x403E - shiftCount, absA<<shiftCount);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float32_to_floatx80(float32 a, float_status_t &status)
|
|
{
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
int aSign = extractFloat32Sign(a);
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return commonNaNToFloatx80(float32ToCommonNaN(a, status));
|
|
return packFloatx80(aSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloatx80(aSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
aSig |= 0x00800000;
|
|
return packFloatx80(aSign, aExp + 0x3F80, ((Bit64u) aSig)<<40);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float64_to_floatx80(float64 a, float_status_t &status)
|
|
{
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
int aSign = extractFloat64Sign(a);
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return commonNaNToFloatx80(float64ToCommonNaN(a, status));
|
|
return packFloatx80(aSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloatx80(aSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
return
|
|
packFloatx80(
|
|
aSign, aExp + 0x3C00, (aSig | BX_CONST64(0x0010000000000000))<<11);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 32-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic - which means in particular that the conversion
|
|
| is rounded according to the current rounding mode. If `a' is a NaN or the
|
|
| conversion overflows, the integer indefinite value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s floatx80_to_int32(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit64u aSig = extractFloatx80Frac(a);
|
|
Bit32s aExp = extractFloatx80Exp(a);
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return int32_indefinite;
|
|
}
|
|
|
|
if ((aExp == 0x7FFF) && (Bit64u) (aSig<<1)) aSign = 0;
|
|
int shiftCount = 0x4037 - aExp;
|
|
if (shiftCount <= 0) shiftCount = 1;
|
|
aSig = shift64RightJamming(aSig, shiftCount);
|
|
return roundAndPackInt32(aSign, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 32-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
| toward zero. If `a' is a NaN or the conversion overflows, the integer
|
|
| indefinite value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s floatx80_to_int32_round_to_zero(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit32s aExp;
|
|
Bit64u aSig, savedASig;
|
|
Bit32s z;
|
|
int shiftCount;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return int32_indefinite;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
if (aExp > 0x401E) {
|
|
float_raise(status, float_flag_invalid);
|
|
return (Bit32s)(int32_indefinite);
|
|
}
|
|
if (aExp < 0x3FFF) {
|
|
if (aExp || aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
shiftCount = 0x403E - aExp;
|
|
savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
z = (Bit32s) aSig;
|
|
if (aSign) z = -z;
|
|
if ((z < 0) ^ aSign) {
|
|
float_raise(status, float_flag_invalid);
|
|
return (Bit32s)(int32_indefinite);
|
|
}
|
|
if ((aSig<<shiftCount) != savedASig)
|
|
{
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 64-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic - which means in particular that the conversion
|
|
| is rounded according to the current rounding mode. If `a' is a NaN or the
|
|
| conversion overflows, the integer indefinite value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s floatx80_to_int64(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit32s aExp;
|
|
Bit64u aSig, aSigExtra;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return int64_indefinite;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
int shiftCount = 0x403E - aExp;
|
|
if (shiftCount <= 0)
|
|
{
|
|
if (shiftCount)
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return (Bit64s)(int64_indefinite);
|
|
}
|
|
aSigExtra = 0;
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
|
|
}
|
|
|
|
return roundAndPackInt64(aSign, aSig, aSigExtra, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 64-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
| toward zero. If `a' is a NaN or the conversion overflows, the integer
|
|
| indefinite value is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s floatx80_to_int64_round_to_zero(floatx80 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit32s aExp;
|
|
Bit64u aSig;
|
|
Bit64s z;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return int64_indefinite;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
int shiftCount = aExp - 0x403E;
|
|
if (0 <= shiftCount) {
|
|
aSig &= BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
if ((a.exp != 0xC03E) || aSig) {
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return (Bit64s)(int64_indefinite);
|
|
}
|
|
else if (aExp < 0x3FFF) {
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
z = aSig>>(-shiftCount);
|
|
if ((Bit64u) (aSig<<(shiftCount & 63))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
if (aSign) z = -z;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the single-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 floatx80_to_float32(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit64u aSig = extractFloatx80Frac(a);
|
|
Bit32s aExp = extractFloatx80Exp(a);
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1))
|
|
return commonNaNToFloat32(floatx80ToCommonNaN(a, status));
|
|
|
|
return packFloat32(aSign, 0xFF, 0);
|
|
}
|
|
aSig = shift64RightJamming(aSig, 33);
|
|
if (aExp || aSig) aExp -= 0x3F81;
|
|
return roundAndPackFloat32(aSign, aExp, (Bit32u) aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the double-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 floatx80_to_float64(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit32s aExp;
|
|
Bit64u aSig, zSig;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)) {
|
|
return commonNaNToFloat64(floatx80ToCommonNaN(a, status));
|
|
}
|
|
return packFloat64(aSign, 0x7FF, 0);
|
|
}
|
|
zSig = shift64RightJamming(aSig, 1);
|
|
if (aExp || aSig) aExp -= 0x3C01;
|
|
return roundAndPackFloat64(aSign, aExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the extended double-precision floating-point value `a' to an integer,
|
|
| and returns the result as an extended double-precision floating-point
|
|
| value. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_round_to_int(floatx80 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit64u lastBitMask, roundBitsMask;
|
|
int roundingMode = get_float_rounding_mode(status);
|
|
floatx80 z;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
|
|
Bit32s aExp = extractFloatx80Exp(a);
|
|
Bit64u aSig = extractFloatx80Frac(a);
|
|
if (0x403E <= aExp) {
|
|
if ((aExp == 0x7FFF) && (Bit64u) (aSig<<1)) {
|
|
return propagateFloatx80NaN(a, status);
|
|
}
|
|
return a;
|
|
}
|
|
if (aExp < 0x3FFF) {
|
|
if (aExp == 0) {
|
|
if ((aSig<<1) == 0) return a;
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
float_raise(status, float_flag_inexact);
|
|
aSign = extractFloatx80Sign(a);
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
if ((aExp == 0x3FFE) && (Bit64u) (aSig<<1)) {
|
|
set_float_rounding_up(status);
|
|
return packFloatx80(aSign, 0x3FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
if (aSign) {
|
|
set_float_rounding_up(status);
|
|
return packFloatx80(1, 0x3FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
else {
|
|
return packFloatx80(0, 0, 0);
|
|
}
|
|
case float_round_up:
|
|
if (aSign) {
|
|
return packFloatx80(1, 0, 0);
|
|
}
|
|
else {
|
|
set_float_rounding_up(status);
|
|
return packFloatx80(0, 0x3FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
}
|
|
return packFloatx80(aSign, 0, 0);
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x403E - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
if (roundingMode == float_round_nearest_even) {
|
|
z.fraction += lastBitMask>>1;
|
|
if ((z.fraction & roundBitsMask) == 0) z.fraction &= ~lastBitMask;
|
|
}
|
|
else if (roundingMode != float_round_to_zero) {
|
|
if (extractFloatx80Sign(z) ^ (roundingMode == float_round_up))
|
|
z.fraction += roundBitsMask;
|
|
}
|
|
z.fraction &= ~roundBitsMask;
|
|
if (z.fraction == 0) {
|
|
z.exp++;
|
|
z.fraction = BX_CONST64(0x8000000000000000);
|
|
}
|
|
if (z.fraction != a.fraction) {
|
|
float_raise(status, float_flag_inexact);
|
|
if (z.fraction > a.fraction || z.exp > a.exp)
|
|
set_float_rounding_up(status);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the extended double-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
|
|
| negated before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1) || ((bExp == 0x7FFF) && (Bit64u) (bSig<<1)))
|
|
return propagateFloatx80NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
if ((bExp == 0) && bSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
return roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, bExp, bSig, 0, status);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0)
|
|
return roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, aExp, aSig, 0, status);
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
Bit32s expDiff = aExp - bExp;
|
|
zExp = aExp;
|
|
if (0 < expDiff) {
|
|
shift64ExtraRightJamming(bSig, 0, expDiff, &bSig, &zSig1);
|
|
}
|
|
else if (expDiff < 0) {
|
|
shift64ExtraRightJamming(aSig, 0, -expDiff, &aSig, &zSig1);
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
zSig0 = aSig + bSig;
|
|
zSig1 = 0;
|
|
goto shiftRight1;
|
|
}
|
|
zSig0 = aSig + bSig;
|
|
if ((Bit64s) zSig0 < 0) goto roundAndPack;
|
|
shiftRight1:
|
|
shift64ExtraRightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
|
|
zSig0 |= BX_CONST64(0x8000000000000000);
|
|
zExp++;
|
|
roundAndPack:
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the extended
|
|
| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloatx80(zSign ^ 1, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
if (bExp == 0) {
|
|
if (bSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
return roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign ^ 1, bExp, bSig, 0, status);
|
|
}
|
|
return packFloatx80(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
}
|
|
return roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign ^ 1, bExp, bSig, 0, status);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0)
|
|
return roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, aExp, aSig, 0, status);
|
|
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
Bit32s expDiff = aExp - bExp;
|
|
if (0 < expDiff) {
|
|
shift128RightJamming(bSig, 0, expDiff, &bSig, &zSig1);
|
|
goto aBigger;
|
|
}
|
|
if (expDiff < 0) {
|
|
shift128RightJamming(aSig, 0, -expDiff, &aSig, &zSig1);
|
|
goto bBigger;
|
|
}
|
|
zSig1 = 0;
|
|
if (bSig < aSig) goto aBigger;
|
|
if (aSig < bSig) goto bBigger;
|
|
return packFloatx80(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
bBigger:
|
|
sub128(bSig, 0, aSig, zSig1, &zSig0, &zSig1);
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aBigger:
|
|
sub128(aSig, 0, bSig, zSig1, &zSig0, &zSig1);
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
return
|
|
normalizeRoundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the extended double-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
int aSign = extractFloatx80Sign(a);
|
|
int bSign = extractFloatx80Sign(b);
|
|
|
|
if (aSign == bSign)
|
|
return addFloatx80Sigs(a, b, aSign, status);
|
|
else
|
|
return subFloatx80Sigs(a, b, aSign, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the extended double-precision floating-
|
|
| point values `a' and `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
int aSign = extractFloatx80Sign(a);
|
|
int bSign = extractFloatx80Sign(b);
|
|
|
|
if (aSign == bSign)
|
|
return subFloatx80Sigs(a, b, aSign, status);
|
|
else
|
|
return addFloatx80Sigs(a, b, aSign, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the extended double-precision floating-
|
|
| point values `a' and `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
int aSign, bSign, zSign;
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
|
|
{
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
bSign = extractFloatx80Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1) || ((bExp == 0x7FFF) && (Bit64u) (bSig<<1))) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) goto invalid;
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
if (aExp == 0) {
|
|
if (aSig == 0) goto invalid;
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloatx80(zSign, 0, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) return packFloatx80(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
zExp = aExp + bExp - 0x3FFE;
|
|
mul64To128(aSig, bSig, &zSig0, &zSig1);
|
|
if (0 < (Bit64s) zSig0) {
|
|
shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1);
|
|
--zExp;
|
|
}
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the extended double-precision floating-point
|
|
| value `a' by the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
int aSign, bSign, zSign;
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
Bit64u rem0, rem1, rem2, term0, term1, term2;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a) || floatx80_is_unsupported(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
bSign = extractFloatx80Sign(b);
|
|
|
|
zSign = aSign ^ bSign;
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloatx80(zSign, 0, 0);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
float_raise(status, float_flag_divbyzero);
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloatx80(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = aExp - bExp + 0x3FFE;
|
|
rem1 = 0;
|
|
if (bSig <= aSig) {
|
|
shift128Right(aSig, 0, 1, &aSig, &rem1);
|
|
++zExp;
|
|
}
|
|
zSig0 = estimateDiv128To64(aSig, rem1, bSig);
|
|
mul64To128(bSig, zSig0, &term0, &term1);
|
|
sub128(aSig, rem1, term0, term1, &rem0, &rem1);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig0;
|
|
add128(rem0, rem1, 0, bSig, &rem0, &rem1);
|
|
}
|
|
zSig1 = estimateDiv128To64(rem1, 0, bSig);
|
|
if ((Bit64u) (zSig1<<1) <= 8) {
|
|
mul64To128(bSig, zSig1, &term1, &term2);
|
|
sub128(rem1, 0, term1, term2, &rem1, &rem2);
|
|
while ((Bit64s) rem1 < 0) {
|
|
--zSig1;
|
|
add128(rem1, rem2, 0, bSig, &rem1, &rem2);
|
|
}
|
|
zSig1 |= ((rem1 | rem2) != 0);
|
|
}
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the extended double-precision floating-point
|
|
| value `a'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_sqrt(floatx80 a, float_status_t &status)
|
|
{
|
|
int aSign;
|
|
Bit32s aExp, zExp;
|
|
Bit64u aSig0, aSig1, zSig0, zSig1, doubleZSig0;
|
|
Bit64u rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
|
|
aSig0 = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig0<<1)) return propagateFloatx80NaN(a, status);
|
|
if (! aSign) return a;
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
if (aSign) {
|
|
if ((aExp | aSig0) == 0) return a;
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig0 == 0) return packFloatx80(0, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
|
|
}
|
|
zExp = ((aExp - 0x3FFF)>>1) + 0x3FFF;
|
|
zSig0 = estimateSqrt32(aExp, aSig0>>32);
|
|
shift128Right(aSig0, 0, 2 + (aExp & 1), &aSig0, &aSig1);
|
|
zSig0 = estimateDiv128To64(aSig0, aSig1, zSig0<<32) + (zSig0<<30);
|
|
doubleZSig0 = zSig0<<1;
|
|
mul64To128(zSig0, zSig0, &term0, &term1);
|
|
sub128(aSig0, aSig1, term0, term1, &rem0, &rem1);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig0;
|
|
doubleZSig0 -= 2;
|
|
add128(rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1);
|
|
}
|
|
zSig1 = estimateDiv128To64(rem1, 0, doubleZSig0);
|
|
if ((zSig1 & BX_CONST64(0x3FFFFFFFFFFFFFFF)) <= 5) {
|
|
if (zSig1 == 0) zSig1 = 1;
|
|
mul64To128(doubleZSig0, zSig1, &term1, &term2);
|
|
sub128(rem1, 0, term1, term2, &rem1, &rem2);
|
|
mul64To128(zSig1, zSig1, &term2, &term3);
|
|
sub192(rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3);
|
|
while ((Bit64s) rem1 < 0) {
|
|
--zSig1;
|
|
shortShift128Left(0, zSig1, 1, &term2, &term3);
|
|
term3 |= 1;
|
|
term2 |= doubleZSig0;
|
|
add192(rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3);
|
|
}
|
|
zSig1 |= ((rem1 | rem2 | rem3) != 0);
|
|
}
|
|
shortShift128Left(0, zSig1, 1, &zSig0, &zSig1);
|
|
zSig0 |= doubleZSig0;
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
0, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef FLOAT128
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the quadruple-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 floatx80_to_float128(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit64u zSig0, zSig1;
|
|
|
|
Bit64u aSig = extractFloatx80Frac(a);
|
|
Bit32s aExp = extractFloatx80Exp(a);
|
|
int aSign = extractFloatx80Sign(a);
|
|
|
|
if ((aExp == 0x7FFF) && (Bit64u) (aSig<<1))
|
|
return commonNaNToFloat128(floatx80ToCommonNaN(a, status));
|
|
|
|
shift128Right(aSig<<1, 0, 16, &zSig0, &zSig1);
|
|
return packFloat128(aSign, aExp, zSig0, zSig1);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the extended double-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float128_to_floatx80(float128 a, float_status_t &status)
|
|
{
|
|
Bit32s aExp;
|
|
Bit64u aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1(a);
|
|
aSig0 = extractFloat128Frac0(a);
|
|
aExp = extractFloat128Exp(a);
|
|
int aSign = extractFloat128Sign(a);
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if (aSig0 | aSig1)
|
|
return commonNaNToFloatx80(float128ToCommonNaN(a, status));
|
|
|
|
return packFloatx80(aSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
if ((aSig0 | aSig1) == 0) return packFloatx80(aSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat128Subnormal(aSig0, aSig1, &aExp, &aSig0, &aSig1);
|
|
}
|
|
else aSig0 |= BX_CONST64(0x0001000000000000);
|
|
|
|
shortShift128Left(aSig0, aSig1, 15, &aSig0, &aSig1);
|
|
return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the extended double-precision floating-
|
|
| point value `a' and quadruple-precision floating point value `b'. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_mul(floatx80 a, float128 b, float_status_t &status)
|
|
{
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
int aSign, bSign, zSign;
|
|
|
|
// handle unsupported extended double-precision floating encodings
|
|
if (floatx80_is_unsupported(a))
|
|
{
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
return floatx80_default_nan;
|
|
}
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
bSig0 = extractFloat128Frac0(b);
|
|
bSig1 = extractFloat128Frac1(b);
|
|
bExp = extractFloat128Exp(b);
|
|
bSign = extractFloat128Sign(b);
|
|
|
|
zSign = aSign ^ bSign;
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)
|
|
|| ((bExp == 0x7FFF) && (bSig0 | bSig1)))
|
|
{
|
|
floatx80 r = commonNaNToFloatx80(float128ToCommonNaN(b, status));
|
|
return propagateFloatx80NaN(a, r, status);
|
|
}
|
|
if (bExp == 0) {
|
|
if ((bSig0 | bSig1) == 0) goto invalid;
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if (bSig0 | bSig1) {
|
|
floatx80 r = commonNaNToFloatx80(float128ToCommonNaN(b, status));
|
|
return propagateFloatx80NaN(a, r, status);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) goto invalid;
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
if ((bExp == 0) && (bSig0 | bSig1)) float_raise(status, float_flag_denormal);
|
|
return packFloatx80(zSign, 0, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if ((bSig0 | bSig1) == 0) return packFloatx80(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat128Subnormal(bSig0, bSig1, &bExp, &bSig0, &bSig1);
|
|
}
|
|
else bSig0 |= BX_CONST64(0x0001000000000000);
|
|
|
|
zExp = aExp + bExp - 0x3FFE;
|
|
shortShift128Left(bSig0, bSig1, 15, &bSig0, &bSig1);
|
|
mul128By64To192(bSig0, bSig1, aSig, &zSig0, &zSig1, &zSig2);
|
|
if (0 < (Bit64s) zSig0) {
|
|
shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1);
|
|
--zExp;
|
|
}
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the quadruple-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128 addFloat128Sigs(float128 a, float128 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
Bit32s expDiff;
|
|
|
|
aSig1 = extractFloat128Frac1(a);
|
|
aSig0 = extractFloat128Frac0(a);
|
|
aExp = extractFloat128Exp(a);
|
|
bSig1 = extractFloat128Frac1(b);
|
|
bSig0 = extractFloat128Frac0(b);
|
|
bExp = extractFloat128Exp(b);
|
|
expDiff = aExp - bExp;
|
|
|
|
if (0 < expDiff) {
|
|
if (aExp == 0x7FFF) {
|
|
if (aSig0 | aSig1) return propagateFloat128NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (bExp == 0) --expDiff;
|
|
else bSig0 |= BX_CONST64(0x0001000000000000);
|
|
shift128ExtraRightJamming(bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2);
|
|
zExp = aExp;
|
|
}
|
|
else if (expDiff < 0) {
|
|
if (bExp == 0x7FFF) {
|
|
if (bSig0 | bSig1) return propagateFloat128NaN(a, b, status);
|
|
return packFloat128(zSign, 0x7FFF, 0, 0);
|
|
}
|
|
if (aExp == 0) ++expDiff;
|
|
else aSig0 |= BX_CONST64(0x0001000000000000);
|
|
shift128ExtraRightJamming(aSig0, aSig1, 0, -expDiff, &aSig0, &aSig1, &zSig2);
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if (aExp == 0x7FFF) {
|
|
if (aSig0 | aSig1 | bSig0 | bSig1)
|
|
return propagateFloat128NaN(a, b, status);
|
|
|
|
return a;
|
|
}
|
|
add128(aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1);
|
|
if (aExp == 0) return packFloat128(zSign, 0, zSig0, zSig1);
|
|
zSig2 = 0;
|
|
zSig0 |= BX_CONST64(0x0002000000000000);
|
|
zExp = aExp;
|
|
goto shiftRight1;
|
|
}
|
|
aSig0 |= BX_CONST64(0x0001000000000000);
|
|
add128(aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1);
|
|
--zExp;
|
|
if (zSig0 < BX_CONST64(0x0002000000000000)) goto roundAndPack;
|
|
++zExp;
|
|
shiftRight1:
|
|
shift128ExtraRightJamming(zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2);
|
|
roundAndPack:
|
|
return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the quadruple-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128 subFloat128Sigs(float128 a, float128 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
|
|
Bit32s expDiff;
|
|
|
|
aSig1 = extractFloat128Frac1(a);
|
|
aSig0 = extractFloat128Frac0(a);
|
|
aExp = extractFloat128Exp(a);
|
|
bSig1 = extractFloat128Frac1(b);
|
|
bSig0 = extractFloat128Frac0(b);
|
|
bExp = extractFloat128Exp(b);
|
|
|
|
expDiff = aExp - bExp;
|
|
shortShift128Left(aSig0, aSig1, 14, &aSig0, &aSig1);
|
|
shortShift128Left(bSig0, bSig1, 14, &bSig0, &bSig1);
|
|
if (0 < expDiff) goto aExpBigger;
|
|
if (expDiff < 0) goto bExpBigger;
|
|
if (aExp == 0x7FFF) {
|
|
if (aSig0 | aSig1 | bSig0 | bSig1)
|
|
return propagateFloat128NaN(a, b, status);
|
|
|
|
float_raise(status, float_flag_invalid);
|
|
return float128_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if (bSig0 < aSig0) goto aBigger;
|
|
if (aSig0 < bSig0) goto bBigger;
|
|
if (bSig1 < aSig1) goto aBigger;
|
|
if (aSig1 < bSig1) goto bBigger;
|
|
return packFloat128(0, 0);
|
|
|
|
bExpBigger:
|
|
if (bExp == 0x7FFF) {
|
|
if (bSig0 | bSig1) return propagateFloat128NaN(a, b, status);
|
|
return packFloat128(zSign ^ 1, 0x7FFF, 0, 0);
|
|
}
|
|
if (aExp == 0) ++expDiff;
|
|
else {
|
|
aSig0 |= BX_CONST64(0x4000000000000000);
|
|
}
|
|
shift128RightJamming(aSig0, aSig1, - expDiff, &aSig0, &aSig1);
|
|
bSig0 |= BX_CONST64(0x4000000000000000);
|
|
bBigger:
|
|
sub128(bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1);
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if (aExp == 0x7FFF) {
|
|
if (aSig0 | aSig1) return propagateFloat128NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (bExp == 0) --expDiff;
|
|
else {
|
|
bSig0 |= BX_CONST64(0x4000000000000000);
|
|
}
|
|
shift128RightJamming(bSig0, bSig1, expDiff, &bSig0, &bSig1);
|
|
aSig0 |= BX_CONST64(0x4000000000000000);
|
|
aBigger:
|
|
sub128(aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1);
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the quadruple-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_add(float128 a, float128 b, float_status_t &status)
|
|
{
|
|
int aSign = extractFloat128Sign(a);
|
|
int bSign = extractFloat128Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return addFloat128Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return subFloat128Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the quadruple-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_sub(float128 a, float128 b, float_status_t &status)
|
|
{
|
|
int aSign = extractFloat128Sign(a);
|
|
int bSign = extractFloat128Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return subFloat128Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return addFloat128Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the quadruple-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_mul(float128 a, float128 b, float_status_t &status)
|
|
{
|
|
int aSign, bSign, zSign;
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
|
|
|
|
aSig1 = extractFloat128Frac1(a);
|
|
aSig0 = extractFloat128Frac0(a);
|
|
aExp = extractFloat128Exp(a);
|
|
aSign = extractFloat128Sign(a);
|
|
bSig1 = extractFloat128Frac1(b);
|
|
bSig0 = extractFloat128Frac0(b);
|
|
bExp = extractFloat128Exp(b);
|
|
bSign = extractFloat128Sign(b);
|
|
|
|
zSign = aSign ^ bSign;
|
|
if (aExp == 0x7FFF) {
|
|
if ((aSig0 | aSig1) || ((bExp == 0x7FFF) && (bSig0 | bSig1))) {
|
|
return propagateFloat128NaN(a, b, status);
|
|
}
|
|
if ((bExp | bSig0 | bSig1) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float128_default_nan;
|
|
}
|
|
return packFloat128(zSign, 0x7FFF, 0, 0);
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if (bSig0 | bSig1) return propagateFloat128NaN(a, b, status);
|
|
if ((aExp | aSig0 | aSig1) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float128_default_nan;
|
|
}
|
|
return packFloat128(zSign, 0x7FFF, 0, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if ((aSig0 | aSig1) == 0) return packFloat128(zSign, 0, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat128Subnormal(aSig0, aSig1, &aExp, &aSig0, &aSig1);
|
|
}
|
|
if (bExp == 0) {
|
|
if ((bSig0 | bSig1) == 0) return packFloat128(zSign, 0, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat128Subnormal(bSig0, bSig1, &bExp, &bSig0, &bSig1);
|
|
}
|
|
zExp = aExp + bExp - 0x4000;
|
|
aSig0 |= BX_CONST64(0x0001000000000000);
|
|
shortShift128Left(bSig0, bSig1, 16, &bSig0, &bSig1);
|
|
mul128To256(aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3);
|
|
add128(zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1);
|
|
zSig2 |= (zSig3 != 0);
|
|
if (BX_CONST64(0x0002000000000000) <= zSig0) {
|
|
shift128ExtraRightJamming(zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2);
|
|
++zExp;
|
|
}
|
|
return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the quadruple-precision floating-point value
|
|
| `a' by the corresponding value `b'. The operation is performed according to
|
|
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_div(float128 a, float128 b, float_status_t &status)
|
|
{
|
|
int aSign, bSign, zSign;
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
Bit64u rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
|
|
aSig1 = extractFloat128Frac1(a);
|
|
aSig0 = extractFloat128Frac0(a);
|
|
aExp = extractFloat128Exp(a);
|
|
aSign = extractFloat128Sign(a);
|
|
bSig1 = extractFloat128Frac1(b);
|
|
bSig0 = extractFloat128Frac0(b);
|
|
bExp = extractFloat128Exp(b);
|
|
bSign = extractFloat128Sign(b);
|
|
|
|
zSign = aSign ^ bSign;
|
|
if (aExp == 0x7FFF) {
|
|
if (aSig0 | aSig1) return propagateFloat128NaN(a, b, status);
|
|
if (bExp == 0x7FFF) {
|
|
if (bSig0 | bSig1) return propagateFloat128NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float128_default_nan;
|
|
}
|
|
return packFloat128(zSign, 0x7FFF, 0, 0);
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if (bSig0 | bSig1) return propagateFloat128NaN(a, b, status);
|
|
return packFloat128(zSign, 0, 0, 0);
|
|
}
|
|
if (bExp == 0) {
|
|
if ((bSig0 | bSig1) == 0) {
|
|
if ((aExp | aSig0 | aSig1) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float128_default_nan;
|
|
}
|
|
float_raise(status, float_flag_divbyzero);
|
|
return packFloat128(zSign, 0x7FFF, 0, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat128Subnormal(bSig0, bSig1, &bExp, &bSig0, &bSig1);
|
|
}
|
|
if (aExp == 0) {
|
|
if ((aSig0 | aSig1) == 0) return packFloat128(zSign, 0, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat128Subnormal(aSig0, aSig1, &aExp, &aSig0, &aSig1);
|
|
}
|
|
zExp = aExp - bExp + 0x3FFD;
|
|
shortShift128Left(
|
|
aSig0 | BX_CONST64(0x0001000000000000), aSig1, 15, &aSig0, &aSig1);
|
|
shortShift128Left(
|
|
bSig0 | BX_CONST64(0x0001000000000000), bSig1, 15, &bSig0, &bSig1);
|
|
if (le128(bSig0, bSig1, aSig0, aSig1)) {
|
|
shift128Right(aSig0, aSig1, 1, &aSig0, &aSig1);
|
|
++zExp;
|
|
}
|
|
zSig0 = estimateDiv128To64(aSig0, aSig1, bSig0);
|
|
mul128By64To192(bSig0, bSig1, zSig0, &term0, &term1, &term2);
|
|
sub192(aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig0;
|
|
add192(rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2);
|
|
}
|
|
zSig1 = estimateDiv128To64(rem1, rem2, bSig0);
|
|
if ((zSig1 & 0x3FFF) <= 4) {
|
|
mul128By64To192(bSig0, bSig1, zSig1, &term1, &term2, &term3);
|
|
sub192(rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3);
|
|
while ((Bit64s) rem1 < 0) {
|
|
--zSig1;
|
|
add192(rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3);
|
|
}
|
|
zSig1 |= ((rem1 | rem2 | rem3) != 0);
|
|
}
|
|
shift128ExtraRightJamming(zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2);
|
|
return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a' to
|
|
| the quadruple-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 int64_to_float128(Bit64s a)
|
|
{
|
|
Bit64u zSig0, zSig1;
|
|
|
|
if (a == 0) return packFloat128(0, 0, 0, 0);
|
|
int zSign = (a < 0);
|
|
Bit64u absA = zSign ? - a : a;
|
|
Bit8u shiftCount = countLeadingZeros64(absA) + 49;
|
|
Bit32s zExp = 0x406E - shiftCount;
|
|
if (64 <= shiftCount) {
|
|
zSig1 = 0;
|
|
zSig0 = absA;
|
|
shiftCount -= 64;
|
|
}
|
|
else {
|
|
zSig1 = absA;
|
|
zSig0 = 0;
|
|
}
|
|
shortShift128Left(zSig0, zSig1, shiftCount, &zSig0, &zSig1);
|
|
return packFloat128(zSign, zExp, zSig0, zSig1);
|
|
}
|
|
|
|
#endif
|